[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-02-15 00:41:00 +00:00
parent 819da42584
commit 729d03602e
156 changed files with 254 additions and 254 deletions

View File

@@ -324,7 +324,7 @@ for different problem sizes.</p>
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 63.999998 76.800002
3 32768.0 76.800002 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 384.000001
@@ -339,7 +339,7 @@ for different problem sizes.</p>
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 43.227 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 43.350 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,17 +374,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 186.181817
1 384.0 585.142862 585.142862 153.600004
0 256.0 512.000001 546.133347 188.321838
1 384.0 614.400016 585.142862 153.600004
2 512.0 655.360017 606.814814 154.566038
3 640.0 682.666684 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 814.058574 406.179533 199.038365
94 12288.0 814.111783 415.222812 199.197579
95 12416.0 812.498981 412.149375 198.755369
96 12544.0 812.566838 412.971190 199.111113
97 12672.0 812.633240 411.679167 199.167004
94 12288.0 814.111783 415.661740 199.298541
95 12416.0 812.498981 412.577363 198.854847
96 12544.0 812.566838 412.971190 199.209928
97 12672.0 812.633240 412.097543 199.167004
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 21.808 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 23.478 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -568,8 +568,8 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 3.276800 2.978909
1 384.0 7.372800 ... 7.899428 7.899428
0 256.0 2.978909 ... 2.978909 2.978909
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 34.028308 34.028308
@@ -578,32 +578,32 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
7 1152.0 45.242181 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.888887
9 1408.0 64.138541 ... 67.305878 67.305878
10 1536.0 80.430545 ... 79.526831 79.526831
11 1664.0 62.929456 ... 62.929456 62.061463
12 1792.0 72.983276 ... 72.512412 72.047592
13 1920.0 68.776119 ... 70.172588 70.172588
14 2048.0 73.584279 ... 76.608294 76.608294
15 2176.0 83.155572 ... 85.632545 84.909907
16 2304.0 68.643310 ... 76.809875 76.563695
17 2432.0 71.305746 ... 85.393507 84.877538
18 2560.0 78.019048 ... 80.908642 80.709358
19 2688.0 83.186525 ... 89.676257 89.464755
20 2816.0 83.074685 ... 83.074685 82.759409
21 2944.0 81.832567 ... 80.640830 81.298583
22 3072.0 82.181572 ... 88.750943 86.712254
23 3200.0 83.989503 ... 93.704243 94.256261
24 3328.0 82.369902 ... 83.808259 83.613586
25 3456.0 77.820048 ... 86.318594 89.183149
26 3584.0 87.042978 ... 92.696281 94.448944
27 3712.0 85.675250 ... 85.091436 88.170647
28 3840.0 83.591840 ... 88.332269 91.625518
29 3968.0 86.114283 ... 91.403695 84.915752
30 4096.0 93.271527 ... 83.468735 84.413665
10 1536.0 79.526831 ... 79.526831 78.643199
11 1664.0 62.929456 ... 62.492442 62.061463
12 1792.0 72.512412 ... 72.047592 71.588687
13 1920.0 69.120002 ... 70.530615 69.818184
14 2048.0 73.584279 ... 76.959706 76.608294
15 2176.0 83.155572 ... 85.632545 85.632545
16 2304.0 68.446623 ... 76.809875 76.563695
17 2432.0 71.487187 ... 85.134737 84.877538
18 2560.0 77.283019 ... 81.108913 80.908642
19 2688.0 82.463163 ... 89.676257 88.836198
20 2816.0 82.995641 ... 82.759409 81.369790
21 2944.0 81.832567 ... 81.166173 81.564701
22 3072.0 82.540970 ... 88.197981 86.845249
23 3200.0 82.262212 ... 93.704243 94.256261
24 3328.0 82.369902 ... 84.298943 84.003845
25 3456.0 80.300370 ... 87.064328 88.497878
26 3584.0 87.127323 ... 90.367227 97.205829
27 3712.0 85.638526 ... 88.092894 86.905039
28 3840.0 81.980725 ... 89.259080 91.625518
29 3968.0 85.992909 ... 91.472214 83.863449
30 4096.0 93.077479 ... 86.369197 85.325956
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 24.995 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 27.462 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -371,7 +371,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.011 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.010 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -194,36 +194,36 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 307.200008 98.303995 303.407414
1 1536.0 351.085717 134.050910 341.333333
2 2048.0 420.102553 161.154101 334.367350
3 2560.0 465.454542 181.238943 330.322572
4 3072.0 511.999982 191.999993 320.556515
5 3584.0 551.384634 207.768111 310.527060
6 4096.0 568.231237 219.919464 299.707322
0 1024.0 311.088617 98.303995 303.407414
1 1536.0 351.085717 134.540150 341.333333
2 2048.0 420.102553 161.684218 334.367350
3 2560.0 461.954908 181.238943 330.322572
4 3072.0 515.580429 192.501302 320.556515
5 3584.0 551.384634 208.271186 311.652167
6 4096.0 568.231237 220.412561 299.707322
7 4608.0 500.416301 232.825259 286.507772
8 5120.0 525.128191 242.366855 284.444444
9 5632.0 540.671974 243.545956 288.820505
10 6144.0 542.117638 248.242431 285.767458
11 6656.0 530.710976 256.000009 285.767438
8 5120.0 525.128191 242.606113 285.104413
9 5632.0 540.671974 243.107920 289.438969
10 6144.0 542.117638 248.661056 285.767458
11 6656.0 532.479975 256.000009 285.767438
12 7168.0 505.976473 260.654538 286.242939
13 7680.0 481.253256 262.564106 279.272719
14 8192.0 462.607053 267.130429 284.526763
15 8704.0 417.791980 267.815384 284.987724
13 7680.0 481.253256 262.190612 275.104486
14 8192.0 462.607053 267.130429 284.939124
15 8704.0 416.958106 267.472468 284.599455
16 9216.0 430.319054 272.394084 288.751954
17 9728.0 438.857162 280.278512 289.667485
18 10240.0 447.650282 286.433562 290.496460
19 10752.0 428.651173 247.172406 290.922209
20 11264.0 429.104745 245.536784 286.676558
21 11776.0 423.089806 249.667843 288.686414
18 10240.0 447.650282 286.100109 287.438599
19 10752.0 428.651173 246.935876 290.594591
20 11264.0 429.786952 245.536784 286.676558
21 11776.0 423.089806 249.888595 288.981596
22 12288.0 420.102570 254.673582 294.323369
23 12800.0 414.574901 253.465340 289.811310
24 13312.0 412.775186 252.559690 289.916513
23 12800.0 414.574901 253.674644 289.811310
24 13312.0 412.775186 252.759501 290.179836
25 13824.0 406.090579 257.190689 292.056329
26 14336.0 395.930964 254.297107 286.719986
26 14336.0 396.387109 254.297107 286.719986
27 14848.0 386.498925 257.665934 289.246765
28 15360.0 373.495460 257.790220 287.102804
29 15872.0 370.192407 261.626369 289.899545
28 15360.0 373.117425 257.970599 287.102804
29 15872.0 370.552519 261.626369 289.899545
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 12.626 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 13.280 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>12:42.667</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>12:47.580</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,23 +183,23 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:24.995</p></td>
<td><p>05:27.462</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:21.808</p></td>
<td><p>03:23.478</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:12.626</p></td>
<td><p>02:13.280</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:43.227</p></td>
<td><p>01:43.350</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.011</p></td>
<td><p>00:00.010</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>