[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-08-06 00:49:10 +00:00
parent 844e79e14c
commit 73ee4b1d0d
167 changed files with 288 additions and 288 deletions

View File

@@ -1,4 +1,4 @@
# Sphinx build info version 1
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
config: f293410811a23e0582da8ef1fa35bfc6
config: 4d6b85d7c9a7d93ae015e5e1fbc4850d
tags: 645f666f9bcd5a90fca523b33c5a78b7

Binary file not shown.

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 23 KiB

After

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 15 KiB

After

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 36 KiB

After

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 23 KiB

After

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 60 KiB

After

Width:  |  Height:  |  Size: 58 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 34 KiB

After

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 35 KiB

After

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 22 KiB

After

Width:  |  Height:  |  Size: 22 KiB

View File

@@ -234,8 +234,8 @@ We can now run the decorated function above. Pass `print_data=True` to see the p
size Triton Torch
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 63.999998 63.999998
2 16384.0 31.999999 38.400001
3 32768.0 76.800002 63.999998
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 384.000001 384.000001
@@ -245,7 +245,7 @@ We can now run the decorated function above. Pass `print_data=True` to see the p
10 4194304.0 780.190482 780.190482
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
13 33554432.0 842.004273 843.811163
13 33554432.0 842.004273 842.906750
14 67108864.0 847.448255 848.362445
15 134217728.0 849.737435 850.656574
@@ -255,7 +255,7 @@ We can now run the decorated function above. Pass `print_data=True` to see the p
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 1 minutes 50.498 seconds)
**Total running time of the script:** ( 1 minutes 50.715 seconds)
.. _sphx_glr_download_getting-started_tutorials_01-vector-add.py:

View File

@@ -278,17 +278,17 @@ We will then compare its performance against (1) :code:`torch.softmax` and (2) t
softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 546.133347 546.133347 190.511628
1 384.0 614.400016 585.142862 153.600004
2 512.0 655.360017 606.814814 154.566038
0 256.0 546.133347 546.133347 188.321838
1 384.0 614.400016 585.142862 151.703707
2 512.0 655.360017 606.814814 156.038096
3 640.0 706.206879 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 812.359066 406.179533 198.530610
94 12288.0 812.429770 415.222812 198.794749
95 12416.0 812.498981 412.149375 198.556711
96 12544.0 810.925276 412.546756 198.716830
97 12672.0 811.007961 412.097543 198.776477
93 12160.0 812.359066 405.755985 198.834951
94 12288.0 812.429770 415.222812 199.096718
95 12416.0 812.498981 411.722274 198.655991
96 12544.0 810.925276 412.971190 198.913776
97 12672.0 811.007961 412.516771 199.069228
[98 rows x 4 columns]
@@ -306,7 +306,7 @@ In the above plot, we can see that:
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 3 minutes 32.107 seconds)
**Total running time of the script:** ( 3 minutes 30.914 seconds)
.. _sphx_glr_download_getting-started_tutorials_02-fused-softmax.py:

View File

@@ -459,37 +459,37 @@ We can now compare the performance of our kernel against that of cuBLAS. Here we
matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.978909 ... 2.978909 3.276800
0 256.0 2.730667 ... 2.978909 2.978909
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 35.389441 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 49.932191 ... 53.773130 52.428801
7 1152.0 44.566925 ... 47.396572 47.396572
7 1152.0 45.242181 ... 48.161033 47.396572
8 1280.0 51.200001 ... 57.690139 57.690139
9 1408.0 64.138541 ... 68.147202 67.305878
10 1536.0 80.430545 ... 81.355034 79.526831
9 1408.0 64.138541 ... 69.009825 67.305878
10 1536.0 80.430545 ... 80.430545 79.526831
11 1664.0 62.929456 ... 63.372618 62.492442
12 1792.0 72.512412 ... 73.460287 59.467852
13 1920.0 69.120002 ... 71.626943 71.257735
14 2048.0 73.908442 ... 78.398206 77.314362
15 2176.0 83.500614 ... 87.876193 86.367588
16 2304.0 68.446623 ... 78.064941 77.307030
17 2432.0 71.305746 ... 86.711310 85.653855
18 2560.0 78.019048 ... 82.956960 81.715711
19 2688.0 83.922689 ... 90.316801 90.102270
20 2816.0 79.587973 ... 83.873477 83.873477
21 2944.0 81.832567 ... 83.617504 82.921853
22 3072.0 81.707223 ... 90.164177 88.197981
23 3200.0 82.262212 ... 97.190583 95.238096
24 3328.0 82.843841 ... 85.196803 84.200347
25 3456.0 79.430113 ... 85.133652 82.604067
26 3584.0 87.381330 ... 99.244365 91.563533
27 3712.0 84.874549 ... 82.902362 86.044224
28 3840.0 84.550462 ... 93.405401 84.809814
29 3968.0 92.512459 ... 84.975809 90.859224
30 4096.0 86.313653 ... 93.792965 90.321484
16 2304.0 68.251065 ... 78.064941 77.307030
17 2432.0 71.305746 ... 86.179335 85.393507
18 2560.0 77.833728 ... 82.539044 81.512437
19 2688.0 83.737433 ... 91.185232 89.254248
20 2816.0 79.879498 ... 82.602666 83.392363
21 2944.0 82.102191 ... 82.990890 83.337844
22 3072.0 80.202695 ... 89.170242 87.381335
23 3200.0 82.474230 ... 96.676741 95.238096
24 3328.0 82.843841 ... 86.062515 84.795401
25 3456.0 81.026701 ... 91.200871 87.347312
26 3584.0 87.381330 ... 95.350361 98.268190
27 3712.0 85.970176 ... 89.353616 87.552452
28 3840.0 79.192264 ... 91.853823 85.796739
29 3968.0 87.850207 ... 86.449828 89.988156
30 4096.0 86.509232 ... 92.948562 87.352901
[31 rows x 5 columns]
@@ -499,7 +499,7 @@ We can now compare the performance of our kernel against that of cuBLAS. Here we
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 6 minutes 38.502 seconds)
**Total running time of the script:** ( 7 minutes 14.457 seconds)
.. _sphx_glr_download_getting-started_tutorials_03-matrix-multiplication.py:

View File

@@ -240,7 +240,7 @@ References
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 0 minutes 0.012 seconds)
**Total running time of the script:** ( 0 minutes 0.282 seconds)
.. _sphx_glr_download_getting-started_tutorials_04-low-memory-dropout.py:

View File

@@ -38,35 +38,35 @@ Layer Normalization
layer-norm:
N Triton Torch Apex
0 1024.0 606.814814 277.694907 468.114273
0 1024.0 585.142849 277.694907 468.114273
1 1536.0 630.153868 323.368435 511.999982
2 2048.0 682.666643 334.367358 520.126988
3 2560.0 694.237267 365.714281 512.000013
4 3072.0 712.347810 378.092307 496.484863
5 3584.0 725.873439 384.859062 451.527536
6 4096.0 728.177767 381.023256 455.111095
7 4608.0 670.254540 394.267384 426.173427
8 5120.0 688.403381 397.669909 422.268057
9 5632.0 704.000002 395.228063 415.262685
2 2048.0 682.666643 337.814445 520.126988
3 2560.0 694.237267 365.714281 518.481028
4 3072.0 712.347810 375.206126 496.484863
5 3584.0 725.873439 384.859062 455.111115
6 4096.0 728.177767 381.023256 442.810792
7 4608.0 670.254540 396.387087 426.173427
8 5120.0 688.403381 397.669909 426.666652
9 5632.0 698.542675 398.725657 411.470331
10 6144.0 697.191505 402.885254 409.600010
11 6656.0 700.631610 400.360920 400.360920
12 7168.0 690.891575 396.844306 387.459443
13 7680.0 678.895043 393.846167 386.415087
14 8192.0 636.271854 393.609605 371.308771
15 8704.0 627.315309 389.005597 381.545190
16 9216.0 606.814809 407.337026 383.999986
17 9728.0 587.350922 409.599987 383.369452
18 10240.0 564.965524 408.578556 382.803739
19 10752.0 547.872604 411.559798 381.445676
20 11264.0 533.207081 406.826188 373.134567
21 11776.0 520.486200 409.599991 377.587162
22 12288.0 514.680630 413.911572 383.251457
23 12800.0 504.433489 410.420828 376.470582
24 13312.0 494.180982 405.699062 376.976995
25 13824.0 482.934503 411.888257 379.389355
26 14336.0 471.967074 406.695045 374.185964
27 14848.0 461.297068 408.192434 375.304904
28 15360.0 454.269882 406.214870 378.092307
11 6656.0 700.631610 400.360920 398.861429
12 7168.0 690.891575 382.293315 382.293315
13 7680.0 678.895043 392.587863 386.415087
14 8192.0 636.271854 392.431125 374.491442
15 8704.0 624.502255 392.292962 380.502740
16 9216.0 606.814809 403.989025 383.002605
17 9728.0 587.350922 407.455499 382.427505
18 10240.0 566.920437 407.562184 381.911416
19 10752.0 547.872604 410.577576 380.601764
20 11264.0 533.207081 396.096702 369.311483
21 11776.0 521.927959 407.826843 377.587162
22 12288.0 516.031509 413.042029 382.505826
23 12800.0 504.433489 408.782457 376.470582
24 13312.0 494.180982 401.871683 375.647260
25 13824.0 482.934503 409.600016 378.092325
26 14336.0 471.967074 398.914774 372.969090
27 14848.0 461.297068 403.341254 374.712936
28 15360.0 454.269882 406.887417 378.092307
29 15872.0 447.887117 406.974373 376.225175
@@ -393,7 +393,7 @@ Layer Normalization
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 5 minutes 38.270 seconds)
**Total running time of the script:** ( 5 minutes 38.714 seconds)
.. _sphx_glr_download_getting-started_tutorials_05-layer-norm.py:

View File

@@ -385,7 +385,7 @@ This is a Triton implementation of the Flash Attention algorithm
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 0 minutes 0.073 seconds)
**Total running time of the script:** ( 0 minutes 0.074 seconds)
.. _sphx_glr_download_getting-started_tutorials_06-fused-attention.py:

View File

@@ -152,7 +152,7 @@ We can also customize the libdevice library path by passing the path to the `lib
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 0 minutes 0.010 seconds)
**Total running time of the script:** ( 0 minutes 0.250 seconds)
.. _sphx_glr_download_getting-started_tutorials_07-libdevice-function.py:

View File

@@ -5,20 +5,20 @@
Computation times
=================
**17:39.472** total execution time for **getting-started_tutorials** files:
**18:15.408** total execution time for **getting-started_tutorials** files:
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_03-matrix-multiplication.py` (``03-matrix-multiplication.py``) | 06:38.502 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_03-matrix-multiplication.py` (``03-matrix-multiplication.py``) | 07:14.457 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_05-layer-norm.py` (``05-layer-norm.py``) | 05:38.270 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_05-layer-norm.py` (``05-layer-norm.py``) | 05:38.714 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_02-fused-softmax.py` (``02-fused-softmax.py``) | 03:32.107 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_02-fused-softmax.py` (``02-fused-softmax.py``) | 03:30.914 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_01-vector-add.py` (``01-vector-add.py``) | 01:50.498 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_01-vector-add.py` (``01-vector-add.py``) | 01:50.715 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_06-fused-attention.py` (``06-fused-attention.py``) | 00:00.073 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_04-low-memory-dropout.py` (``04-low-memory-dropout.py``) | 00:00.282 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_04-low-memory-dropout.py` (``04-low-memory-dropout.py``) | 00:00.012 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_07-libdevice-function.py` (``07-libdevice-function.py``) | 00:00.250 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_07-libdevice-function.py` (``07-libdevice-function.py``) | 00:00.010 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_06-fused-attention.py` (``06-fused-attention.py``) | 00:00.074 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+

View File

@@ -326,8 +326,8 @@ for different problem sizes.</p>
size Triton Torch
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 63.999998 63.999998
2 16384.0 31.999999 38.400001
3 32768.0 76.800002 63.999998
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 384.000001 384.000001
@@ -337,12 +337,12 @@ for different problem sizes.</p>
10 4194304.0 780.190482 780.190482
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
13 33554432.0 842.004273 843.811163
13 33554432.0 842.004273 842.906750
14 67108864.0 847.448255 848.362445
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 50.498 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 50.715 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -371,17 +371,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 546.133347 546.133347 190.511628
1 384.0 614.400016 585.142862 153.600004
2 512.0 655.360017 606.814814 154.566038
0 256.0 546.133347 546.133347 188.321838
1 384.0 614.400016 585.142862 151.703707
2 512.0 655.360017 606.814814 156.038096
3 640.0 706.206879 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 812.359066 406.179533 198.530610
94 12288.0 812.429770 415.222812 198.794749
95 12416.0 812.498981 412.149375 198.556711
96 12544.0 810.925276 412.546756 198.716830
97 12672.0 811.007961 412.097543 198.776477
93 12160.0 812.359066 405.755985 198.834951
94 12288.0 812.429770 415.222812 199.096718
95 12416.0 812.498981 411.722274 198.655991
96 12544.0 810.925276 412.971190 198.913776
97 12672.0 811.007961 412.516771 199.069228
[98 rows x 4 columns]
</pre></div>
@@ -394,7 +394,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 32.107 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 30.914 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -567,42 +567,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.978909 ... 2.978909 3.276800
0 256.0 2.730667 ... 2.978909 2.978909
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 35.389441 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 49.932191 ... 53.773130 52.428801
7 1152.0 44.566925 ... 47.396572 47.396572
7 1152.0 45.242181 ... 48.161033 47.396572
8 1280.0 51.200001 ... 57.690139 57.690139
9 1408.0 64.138541 ... 68.147202 67.305878
10 1536.0 80.430545 ... 81.355034 79.526831
9 1408.0 64.138541 ... 69.009825 67.305878
10 1536.0 80.430545 ... 80.430545 79.526831
11 1664.0 62.929456 ... 63.372618 62.492442
12 1792.0 72.512412 ... 73.460287 59.467852
13 1920.0 69.120002 ... 71.626943 71.257735
14 2048.0 73.908442 ... 78.398206 77.314362
15 2176.0 83.500614 ... 87.876193 86.367588
16 2304.0 68.446623 ... 78.064941 77.307030
17 2432.0 71.305746 ... 86.711310 85.653855
18 2560.0 78.019048 ... 82.956960 81.715711
19 2688.0 83.922689 ... 90.316801 90.102270
20 2816.0 79.587973 ... 83.873477 83.873477
21 2944.0 81.832567 ... 83.617504 82.921853
22 3072.0 81.707223 ... 90.164177 88.197981
23 3200.0 82.262212 ... 97.190583 95.238096
24 3328.0 82.843841 ... 85.196803 84.200347
25 3456.0 79.430113 ... 85.133652 82.604067
26 3584.0 87.381330 ... 99.244365 91.563533
27 3712.0 84.874549 ... 82.902362 86.044224
28 3840.0 84.550462 ... 93.405401 84.809814
29 3968.0 92.512459 ... 84.975809 90.859224
30 4096.0 86.313653 ... 93.792965 90.321484
16 2304.0 68.251065 ... 78.064941 77.307030
17 2432.0 71.305746 ... 86.179335 85.393507
18 2560.0 77.833728 ... 82.539044 81.512437
19 2688.0 83.737433 ... 91.185232 89.254248
20 2816.0 79.879498 ... 82.602666 83.392363
21 2944.0 82.102191 ... 82.990890 83.337844
22 3072.0 80.202695 ... 89.170242 87.381335
23 3200.0 82.474230 ... 96.676741 95.238096
24 3328.0 82.843841 ... 86.062515 84.795401
25 3456.0 81.026701 ... 91.200871 87.347312
26 3584.0 87.381330 ... 95.350361 98.268190
27 3712.0 85.970176 ... 89.353616 87.552452
28 3840.0 79.192264 ... 91.853823 85.796739
29 3968.0 87.850207 ... 86.449828 89.988156
30 4096.0 86.509232 ... 92.948562 87.352901
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 6 minutes 38.502 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 7 minutes 14.457 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -374,7 +374,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.012 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.282 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -196,35 +196,35 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm:
N Triton Torch Apex
0 1024.0 606.814814 277.694907 468.114273
0 1024.0 585.142849 277.694907 468.114273
1 1536.0 630.153868 323.368435 511.999982
2 2048.0 682.666643 334.367358 520.126988
3 2560.0 694.237267 365.714281 512.000013
4 3072.0 712.347810 378.092307 496.484863
5 3584.0 725.873439 384.859062 451.527536
6 4096.0 728.177767 381.023256 455.111095
7 4608.0 670.254540 394.267384 426.173427
8 5120.0 688.403381 397.669909 422.268057
9 5632.0 704.000002 395.228063 415.262685
2 2048.0 682.666643 337.814445 520.126988
3 2560.0 694.237267 365.714281 518.481028
4 3072.0 712.347810 375.206126 496.484863
5 3584.0 725.873439 384.859062 455.111115
6 4096.0 728.177767 381.023256 442.810792
7 4608.0 670.254540 396.387087 426.173427
8 5120.0 688.403381 397.669909 426.666652
9 5632.0 698.542675 398.725657 411.470331
10 6144.0 697.191505 402.885254 409.600010
11 6656.0 700.631610 400.360920 400.360920
12 7168.0 690.891575 396.844306 387.459443
13 7680.0 678.895043 393.846167 386.415087
14 8192.0 636.271854 393.609605 371.308771
15 8704.0 627.315309 389.005597 381.545190
16 9216.0 606.814809 407.337026 383.999986
17 9728.0 587.350922 409.599987 383.369452
18 10240.0 564.965524 408.578556 382.803739
19 10752.0 547.872604 411.559798 381.445676
20 11264.0 533.207081 406.826188 373.134567
21 11776.0 520.486200 409.599991 377.587162
22 12288.0 514.680630 413.911572 383.251457
23 12800.0 504.433489 410.420828 376.470582
24 13312.0 494.180982 405.699062 376.976995
25 13824.0 482.934503 411.888257 379.389355
26 14336.0 471.967074 406.695045 374.185964
27 14848.0 461.297068 408.192434 375.304904
28 15360.0 454.269882 406.214870 378.092307
11 6656.0 700.631610 400.360920 398.861429
12 7168.0 690.891575 382.293315 382.293315
13 7680.0 678.895043 392.587863 386.415087
14 8192.0 636.271854 392.431125 374.491442
15 8704.0 624.502255 392.292962 380.502740
16 9216.0 606.814809 403.989025 383.002605
17 9728.0 587.350922 407.455499 382.427505
18 10240.0 566.920437 407.562184 381.911416
19 10752.0 547.872604 410.577576 380.601764
20 11264.0 533.207081 396.096702 369.311483
21 11776.0 521.927959 407.826843 377.587162
22 12288.0 516.031509 413.042029 382.505826
23 12800.0 504.433489 408.782457 376.470582
24 13312.0 494.180982 401.871683 375.647260
25 13824.0 482.934503 409.600016 378.092325
26 14336.0 471.967074 398.914774 372.969090
27 14848.0 461.297068 403.341254 374.712936
28 15360.0 454.269882 406.887417 378.092307
29 15872.0 447.887117 406.974373 376.225175
</pre></div>
</div>
@@ -543,7 +543,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 38.270 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 38.714 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -543,7 +543,7 @@ to download the full example code</p>
<span class="c1"># bench_flash_attention.run(save_path=&#39;.&#39;, print_data=True)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.073 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.074 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-06-fused-attention-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/54a35f6ec55f9746935b9566fb6bb1df/06-fused-attention.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">06-fused-attention.py</span></code></a></p>

View File

@@ -276,7 +276,7 @@ tensor([0.4105, 0.5430, 0.0249, ..., 0.0424, 0.5351, 0.8149], device=&#39;cuda:
The maximum difference between torch and triton is 2.384185791015625e-07
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.010 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.250 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-07-libdevice-function-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/3ff29f967ace7985da24aab10352fc76/07-libdevice-function.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">07-libdevice-function.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>17:39.472</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>18:15.408</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,31 +183,31 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>06:38.502</p></td>
<td><p>07:14.457</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>05:38.270</p></td>
<td><p>05:38.714</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:32.107</p></td>
<td><p>03:30.914</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:50.498</p></td>
<td><p>01:50.715</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.282</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="07-libdevice-function.html#sphx-glr-getting-started-tutorials-07-libdevice-function-py"><span class="std std-ref">Libdevice function</span></a> (<code class="docutils literal notranslate"><span class="pre">07-libdevice-function.py</span></code>)</p></td>
<td><p>00:00.250</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="06-fused-attention.html#sphx-glr-getting-started-tutorials-06-fused-attention-py"><span class="std std-ref">Fused Attention</span></a> (<code class="docutils literal notranslate"><span class="pre">06-fused-attention.py</span></code>)</p></td>
<td><p>00:00.073</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.012</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="07-libdevice-function.html#sphx-glr-getting-started-tutorials-07-libdevice-function-py"><span class="std std-ref">Libdevice function</span></a> (<code class="docutils literal notranslate"><span class="pre">07-libdevice-function.py</span></code>)</p></td>
<td><p>00:00.010</p></td>
<td><p>00:00.074</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>

File diff suppressed because one or more lines are too long

View File

@@ -1,4 +1,4 @@
# Sphinx build info version 1
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
config: 67b632ed73e130ff238d935883579ed2
config: b6a148ad6f1fecfeeccdf8b46659d01a
tags: 645f666f9bcd5a90fca523b33c5a78b7

Binary file not shown.

Binary file not shown.

Some files were not shown because too many files have changed in this diff Show More