[PYTHON][EXAMPLES] Better einsum example
This commit is contained in:
@@ -8,6 +8,7 @@
|
||||
#include <string>
|
||||
#include <memory>
|
||||
#include <functional>
|
||||
#include <mutex>
|
||||
// codegen
|
||||
#include "triton/ir/context.h"
|
||||
#include "triton/codegen/target.h"
|
||||
@@ -110,6 +111,7 @@ private:
|
||||
std::string src_;
|
||||
options_space_t opt_space_;
|
||||
std::map<cache_key_t, caller> cache_;
|
||||
std::mutex src_mutex_;
|
||||
};
|
||||
|
||||
}
|
||||
|
@@ -9,8 +9,6 @@
|
||||
#include <unordered_map>
|
||||
|
||||
|
||||
extern std::string filename_in;
|
||||
extern std::string filename_out;
|
||||
|
||||
using DirectiveMap = std::unordered_map<std::string, int>;
|
||||
|
||||
|
@@ -29,9 +29,9 @@
|
||||
#include "triton/ir/print.h"
|
||||
#include "triton/tools/bench.hpp"
|
||||
#include "llvm/IR/Module.h"
|
||||
#include <mutex>
|
||||
|
||||
|
||||
|
||||
std::mutex mut;
|
||||
|
||||
namespace triton{
|
||||
namespace runtime {
|
||||
@@ -168,7 +168,6 @@ function::caller function::autotune(driver::stream* stream, const grid_fn_ty& gr
|
||||
for(auto it: opt_space_.defines)
|
||||
cpp.AddMacro(it.first, &opt.defines.at(it.first));
|
||||
cpp.Process(tokens);
|
||||
// tokens.Print(stdout);
|
||||
// parse
|
||||
Parser parser(tokens);
|
||||
parser.Parse();
|
||||
@@ -309,7 +308,10 @@ void function::operator()(const std::vector<arg>& args, const grid_fn_ty& grid_f
|
||||
}
|
||||
|
||||
/* re-tune and re-compile */
|
||||
{
|
||||
std::lock_guard<std::mutex> lock(mut);
|
||||
cache_.insert({key, autotune(stream, grid_fn, args)});
|
||||
}
|
||||
}
|
||||
|
||||
void function::operator()(const std::vector<arg>& args, const grid_t& grid, driver::stream *stream) {
|
||||
|
@@ -1,38 +1,92 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from enum import Enum
|
||||
import triton
|
||||
|
||||
batch_dim = 16
|
||||
ctx_dim = 32
|
||||
head_dim = 8
|
||||
state_dim = 32
|
||||
key_dim = 32
|
||||
n_keys = 32
|
||||
bs = batch_dim * ctx_dim
|
||||
class MODE(Enum):
|
||||
TF = 1
|
||||
TORCH = 2
|
||||
|
||||
# shapes
|
||||
x_shape = (bs, state_dim)
|
||||
qw_shape = (state_dim, head_dim * key_dim)
|
||||
kw_shape = (head_dim, 2, n_keys, key_dim // 2)
|
||||
try:
|
||||
import tensorflow as tf
|
||||
mode = MODE.TF
|
||||
except ModuleNotFoundError:
|
||||
pass
|
||||
|
||||
np.random.seed(0)
|
||||
x = np.random.uniform(-1.0, 1.0, x_shape).astype(np.float32) # layer input
|
||||
qw = np.random.uniform(-1.0, 1.0, qw_shape).astype(np.float32) # query weights
|
||||
kw = np.random.uniform(-1.0, 1.0, kw_shape).astype(np.float32) # key weights
|
||||
# (bs, head_dim * key_dim) = (bs, state_dim) * (state_dim, head_dim * key_dim)
|
||||
# (bs, head_dim, 2, key_dim//2) <== (bs, head_dim * key_dim)
|
||||
q = np.dot(x, qw).reshape(bs, head_dim, 2, key_dim//2) # normal matmul
|
||||
try:
|
||||
import torch
|
||||
mode = MODE.TORCH
|
||||
except ModuleNotFoundError:
|
||||
pass
|
||||
|
||||
# (bs, head_dim, 2, n_keys) = (bs, head_dim, 2, key_dim//2) * (head_dim, 2, n_keys, key_dim//2)
|
||||
# outer: bs, n_keys
|
||||
# inner: key_dim//2
|
||||
# batch: head_dim, 2 (key_axis)
|
||||
qk = np.einsum("bhak,hank->bhan", q, kw)
|
||||
cases = []
|
||||
# Matmul
|
||||
cases += [[[4, 1024, 1024], [1024, 1024], [4, 1024, 1024], "btc,ck->btk"]]
|
||||
# Attention
|
||||
cases += [[[4, 256, 8, 2, 64], [8, 2, 512, 64], [4, 256, 8, 2, 512], "bchak,hank->bchan"]]
|
||||
|
||||
tq = torch.from_numpy(q).contiguous().cuda()
|
||||
tkw = torch.from_numpy(kw).contiguous().cuda()
|
||||
tqk = triton.ops.einsum("bhak,hank->bhan", tq, tkw)
|
||||
diff = np.abs(qk - tqk.cpu().numpy())
|
||||
print(np.max(diff))
|
||||
print(np.min(diff))
|
||||
if mode == MODE.TF:
|
||||
sess = tf.InteractiveSession()
|
||||
|
||||
for a_shape, b_shape, c_shape, einsum in cases:
|
||||
|
||||
A = np.random.uniform(-1.0, 1.0, a_shape).astype(np.float16).astype(np.float32)
|
||||
B = np.random.uniform(-1.0, 1.0, b_shape).astype(np.float16).astype(np.float32)
|
||||
E = np.random.uniform(-1.0, 1.0, c_shape).astype(np.float16).astype(np.float32)
|
||||
|
||||
# Execute (tensorflow)
|
||||
if mode == MODE.TF:
|
||||
a = tf.placeholder(tf.float32, a_shape, name="a")
|
||||
b = tf.placeholder(tf.float32, b_shape, name="b")
|
||||
e = tf.placeholder(tf.float32, c_shape, name="e")
|
||||
c = triton.ops.einsum(einsum, a, b, 1)
|
||||
da, db = tf.gradients(c, [a, b], e)
|
||||
feed_dict = { a: A.astype(np.float32),
|
||||
b: B.astype(np.float32),
|
||||
e: E }
|
||||
sess.run(tf.global_variables_initializer())
|
||||
result = sess.run([c, da, db], feed_dict = feed_dict)
|
||||
# Execute (torch)
|
||||
if mode == MODE.TORCH:
|
||||
a = torch.from_numpy(A).cuda()
|
||||
b = torch.from_numpy(B).cuda()
|
||||
e = torch.from_numpy(E).cuda()
|
||||
a.requires_grad_(True)
|
||||
b.requires_grad_(True)
|
||||
c = triton.ops.einsum(einsum, a, b, 1)
|
||||
torch.autograd.backward(c, e)
|
||||
da = a.grad
|
||||
db = b.grad
|
||||
result = [c.cpu().detach().numpy(), da.cpu().detach().numpy(), db.cpu().detach().numpy()]
|
||||
|
||||
# benchmark
|
||||
nanosec = triton.bench_registry[c]
|
||||
ctx = triton.ctx_registry[c]
|
||||
b, m, n, k = tuple((ctx.bmnk[i] for i in range(0, 4)))
|
||||
ops = 2.*b*m*n*k
|
||||
print('C TFLOPS:', ops / triton.bench_registry[c] * 1e-3)
|
||||
#print('DA TFLOPS:', ops / triton.bench_registry[da] * 1e-3)
|
||||
#print('DB TFLOPS:', ops / triton.bench_registry[db] * 1e-3)
|
||||
|
||||
# test
|
||||
ctx = triton.ctx_registry[c]
|
||||
t_a = ctx.trans_a
|
||||
t_b = ctx.trans_b
|
||||
e_a = ctx.einsum_a
|
||||
e_b = ctx.einsum_b
|
||||
e_c = ctx.einsum_c
|
||||
C = np.einsum(einsum, A, B)
|
||||
if not t_a and not t_b: # NN
|
||||
DA = np.einsum(f"{e_c},{e_b}->{e_a}", E, B)
|
||||
DB = np.einsum(f"{e_a},{e_c}->{e_b}", A, E)
|
||||
elif not t_a and t_b: # NT
|
||||
DA = np.einsum(f"{e_c},{e_b}->{e_a}", E, B)
|
||||
DB = np.einsum(f"{e_c},{e_a}->{e_b}", E, A)
|
||||
elif t_a and not t_b: # TN
|
||||
DA = np.einsum(f"{e_b},{e_c}->{e_a}", B, E)
|
||||
DB = np.einsum(f"{e_a},{e_c}->{e_b}", A, E)
|
||||
c, da, db = result[0], result[1], result[2]
|
||||
print('C diff:', np.abs((C - c)).max())
|
||||
print('DA diff:', np.abs((DA - da)).max())
|
||||
print('DB diff:', np.abs((DB - db)).max())
|
@@ -1,139 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
import triton
|
||||
import blocksparse as bs
|
||||
from tensorflow.python.ops import gradient_checker
|
||||
|
||||
one = 0
|
||||
out = 0
|
||||
bench = 0
|
||||
|
||||
class ProdKeyTest(tf.test.TestCase):
|
||||
|
||||
def testEinsum(self):
|
||||
# multi-threading screws up benchmarking
|
||||
conf = tf.ConfigProto(
|
||||
intra_op_parallelism_threads=1,
|
||||
inter_op_parallelism_threads=1)
|
||||
|
||||
with self.test_session(config=conf) as sess, tf.device("/gpu:0"):
|
||||
|
||||
batch_dim = 4
|
||||
ctx_dim = 256
|
||||
head_dim = 8
|
||||
n_keys = 512
|
||||
key_dim = 128
|
||||
|
||||
# batch_dim = 2
|
||||
# ctx_dim = 8
|
||||
# head_dim = 2
|
||||
# n_keys = 16
|
||||
# key_dim = 16
|
||||
|
||||
for a_shape, b_shape, c_shape, einsum in [
|
||||
[ [ 4, 8, 8 ], [ 8, 8 ], [ 4, 8, 8 ], "btc,ck->btk" ],
|
||||
[ [4, 1024, 1024], [ 1024, 1024 ], [4, 1024, 1024 ], "btc,ck->btk" ],
|
||||
[ (batch_dim, ctx_dim, head_dim, 2, key_dim//2),(head_dim, 2, n_keys, key_dim//2), (batch_dim, ctx_dim, head_dim, 2, n_keys), "bchak,hank->bchan" ],
|
||||
]:
|
||||
|
||||
if one:
|
||||
A = np.ones(a_shape, dtype=np.float16).astype(np.float32)
|
||||
B = np.ones(b_shape, dtype=np.float16).astype(np.float32)
|
||||
E = np.ones(c_shape, dtype=np.float32)
|
||||
else:
|
||||
# QK = np.random.normal(loc=0.0, scale=1.0, size=qk_shape).astype(np.float16).astype(np.float32)
|
||||
# V = np.random.normal(loc=0.0, scale=1.0, size=vw_shape).astype(np.float16).astype(np.float32)
|
||||
A = np.random.uniform(-1.0, 1.0, a_shape).astype(np.float16).astype(np.float32)
|
||||
B = np.random.uniform(-1.0, 1.0, b_shape).astype(np.float16).astype(np.float32)
|
||||
E = np.random.uniform(-1.0, 1.0, c_shape).astype(np.float16).astype(np.float32)
|
||||
|
||||
a = tf.placeholder(tf.float32, a_shape, name="a")
|
||||
b = tf.placeholder(tf.float32, b_shape, name="b")
|
||||
e = tf.placeholder(tf.float32, c_shape, name="e")
|
||||
feed_dict = { a: A.astype(np.float32),
|
||||
b: B.astype(np.float32),
|
||||
e: E }
|
||||
|
||||
c = triton.ops.einsum(einsum, a, b, bench=bench)
|
||||
|
||||
# error = gradient_checker.compute_gradient_error(a, a_shape, c, c_shape, delta=1e-1, extra_feed_dict={ b:B }) #
|
||||
# print(error)
|
||||
# error = gradient_checker.compute_gradient_error(b, b_shape, c, c_shape, delta=1e-1, extra_feed_dict={ a:A }) #
|
||||
# print(error)
|
||||
# return
|
||||
|
||||
with tf.control_dependencies([c.op]):
|
||||
da, db = tf.gradients(c, [a, b], e)
|
||||
|
||||
# c, = sess.run( [ c, ], feed_dict )
|
||||
rc, rda, rdb = sess.run( [ c, da, db ], feed_dict )
|
||||
|
||||
if bench > 0:
|
||||
nanosec = triton.bench_registry[c]
|
||||
ctx = triton.ctx_registry[c]
|
||||
b, m, n, k = tuple((ctx.bmnk[i] for i in range(0, 4)))
|
||||
ops = 2. * b * m * n * k
|
||||
print('C TFLOPS:', ops / triton.bench_registry[c] * 1e-3)
|
||||
print('DA TFLOPS:', ops / triton.bench_registry[da] * 1e-3)
|
||||
print('DB TFLOPS:', ops / triton.bench_registry[db] * 1e-3)
|
||||
|
||||
else:
|
||||
C = np.einsum(einsum, A, B)
|
||||
ctx = triton.ctx_registry[c]
|
||||
t_a = ctx.trans_a
|
||||
t_b = ctx.trans_b
|
||||
e_a = ctx.einsum_a
|
||||
e_b = ctx.einsum_b
|
||||
e_c = ctx.einsum_c
|
||||
|
||||
if not t_a and not t_b: # NN
|
||||
DA = np.einsum(f"{e_c},{e_b}->{e_a}", E, B)
|
||||
DB = np.einsum(f"{e_a},{e_c}->{e_b}", A, E)
|
||||
elif not t_a and t_b: # NT
|
||||
DA = np.einsum(f"{e_c},{e_b}->{e_a}", E, B)
|
||||
DB = np.einsum(f"{e_c},{e_a}->{e_b}", E, A)
|
||||
elif t_a and not t_b: # TN
|
||||
DA = np.einsum(f"{e_b},{e_c}->{e_a}", B, E)
|
||||
DB = np.einsum(f"{e_a},{e_c}->{e_b}", A, E)
|
||||
|
||||
print("testProdKey", einsum)
|
||||
if not bench:
|
||||
for op, dev, cpu in [
|
||||
[ "C", rc, C ],
|
||||
[ "DA", rda, DA ],
|
||||
[ "DB", rdb, DB ],
|
||||
]:
|
||||
self.compare_results(op, dev, cpu)
|
||||
|
||||
def compare_results(self, op, dev, cpu):
|
||||
dev = dev.astype(np.float64)
|
||||
cpu = cpu.astype(np.float64)
|
||||
|
||||
# print(dev.reshape(-1)[0:4])
|
||||
# print(cpu.reshape(-1)[0:4])
|
||||
|
||||
dif = np.abs(cpu - dev)
|
||||
maxval = np.max(abs(cpu))
|
||||
avgval = np.average(abs(cpu))
|
||||
maxdif = dif.max()
|
||||
max_err = maxdif if avgval == 0 else maxdif / avgval
|
||||
l2_err = 0.0 if avgval == 0 else np.sqrt(np.square(dif).sum()) / np.sqrt(np.square(cpu).sum())
|
||||
|
||||
print("op:%3s, max:%18.12f, avg:%18.12f, dif:%18.12f, err:%18.12f, l2_err:%18.12f shape:%15s" % (op, maxval, avgval, maxdif, max_err, l2_err, str(cpu.shape)))
|
||||
|
||||
if out:
|
||||
dim = cpu.shape[-1]
|
||||
np.savetxt("%s_dif.txt" % op, dif.reshape((-1,dim)), fmt='%4.1f') #7.5 5.3
|
||||
np.savetxt("%s_cpu.txt" % op, cpu.reshape((-1,dim)), fmt='%4.1f') #7.5 5.3
|
||||
np.savetxt("%s_dev.txt" % op, dev.reshape((-1,dim)), fmt='%4.1f') #7.5 5.3
|
||||
exit()
|
||||
|
||||
if __name__ == "__main__":
|
||||
tf.test.main()
|
||||
|
@@ -179,7 +179,7 @@ void einsumk(TYPE * A, TYPE * B, TYPE * C,
|
||||
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, subscripts, a, b, **kwargs):
|
||||
def forward(ctx, subscripts, a, b, bench = 0):
|
||||
ctx.save_for_backward(a, b)
|
||||
if type(subscripts) is str:
|
||||
einsum_a, einsum_bc = subscripts.split(",")
|
||||
@@ -189,9 +189,7 @@ void einsumk(TYPE * A, TYPE * B, TYPE * C,
|
||||
|
||||
shape_c, bmnk, std0, std1, ta, tb = _einsum._parse_einsum(
|
||||
einsum_a, einsum_b, einsum_c,
|
||||
triton.shape(a), triton.shape(b)
|
||||
)
|
||||
bench = kwargs['bench'] if 'bench' in kwargs else 0
|
||||
triton.shape(a), triton.shape(b))
|
||||
ctx.trans_a = ta
|
||||
ctx.trans_b = tb
|
||||
ctx.einsum_a = einsum_a
|
||||
@@ -213,20 +211,20 @@ void einsumk(TYPE * A, TYPE * B, TYPE * C,
|
||||
bench = ctx.bench
|
||||
|
||||
if not trans_a and not trans_b: # NN
|
||||
da = einsum((einsum_c, einsum_b, einsum_a), dc, b, bench=bench)
|
||||
db = einsum((einsum_a, einsum_c, einsum_b), a, dc, bench=bench)
|
||||
da = einsum((einsum_c, einsum_b, einsum_a), dc, b, bench)
|
||||
db = einsum((einsum_a, einsum_c, einsum_b), a, dc, bench)
|
||||
|
||||
elif not trans_a and trans_b: # NT
|
||||
da = einsum((einsum_c, einsum_b, einsum_a), dc, b, bench=bench)
|
||||
db = einsum((einsum_c, einsum_a, einsum_b), dc, a, bench=bench)
|
||||
da = einsum((einsum_c, einsum_b, einsum_a), dc, b, bench)
|
||||
db = einsum((einsum_c, einsum_a, einsum_b), dc, a, bench)
|
||||
|
||||
elif trans_a and not trans_b: # TN
|
||||
da = einsum((einsum_b, einsum_c, einsum_a), b, dc, bench=bench)
|
||||
db = einsum((einsum_a, einsum_c, einsum_b), a, dc, bench=bench)
|
||||
da = einsum((einsum_b, einsum_c, einsum_a), b, dc, bench)
|
||||
db = einsum((einsum_a, einsum_c, einsum_b), a, dc, bench)
|
||||
|
||||
elif trans_a and trans_b: # TT (not used)
|
||||
da = einsum((einsum_b, einsum_c, einsum_a), b, dc, bench=bench)
|
||||
db = einsum((einsum_c, einsum_a, einsum_b), dc, a, bench=bench)
|
||||
da = einsum((einsum_b, einsum_c, einsum_a), b, dc, bench)
|
||||
db = einsum((einsum_c, einsum_a, einsum_b), dc, a, bench)
|
||||
|
||||
return da, db, None, None, None, None, None, None, None, None, None, None
|
||||
|
||||
|
Reference in New Issue
Block a user