examples
This commit is contained in:
		
							
								
								
									
										49
									
								
								rewrite-test/jit/if-else/vecadd-cond.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										49
									
								
								rewrite-test/jit/if-else/vecadd-cond.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,49 @@
 | 
			
		||||
import triton
 | 
			
		||||
 | 
			
		||||
@triton.jit
 | 
			
		||||
def if_else(lb, ub, value):
 | 
			
		||||
  if value > lb:
 | 
			
		||||
    a = 0.0
 | 
			
		||||
  else:
 | 
			
		||||
    a = 1.0
 | 
			
		||||
  c = a + a
 | 
			
		||||
 | 
			
		||||
@triton.jit
 | 
			
		||||
def only_if(lb, ub, value):
 | 
			
		||||
  a = -1.0
 | 
			
		||||
  if value > lb:
 | 
			
		||||
    a = 0.0
 | 
			
		||||
  c = a + a
 | 
			
		||||
 | 
			
		||||
@triton.jit
 | 
			
		||||
def only_if_invalid(lb, ub, value):
 | 
			
		||||
  if value > lb:
 | 
			
		||||
    a = 0.0
 | 
			
		||||
  c = a + a
 | 
			
		||||
 | 
			
		||||
@triton.jit
 | 
			
		||||
def nested_if(lb, ub, value):
 | 
			
		||||
  if value > lb:
 | 
			
		||||
    if value < ub:
 | 
			
		||||
      a = 2.0
 | 
			
		||||
    else:
 | 
			
		||||
      a = 1.0
 | 
			
		||||
  else:
 | 
			
		||||
    a = 0.0
 | 
			
		||||
  c = a + a
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
mod_if_else, ctx_if_else = if_else.compile_to_ttir(2, 4, 3, grid=(1,))
 | 
			
		||||
mod_if_else.dump()
 | 
			
		||||
 | 
			
		||||
mod_only_if, ctx_only_if = only_if.compile_to_ttir(2, 4, 3, grid=(1,))
 | 
			
		||||
mod_only_if.dump()
 | 
			
		||||
 | 
			
		||||
try:
 | 
			
		||||
  mod_only_if_invalid, ctx_only_if = only_if_invalid.compile_to_ttir(2, 4, 3, grid=(1,))
 | 
			
		||||
  mod_only_if_invalid.dump()
 | 
			
		||||
except:
 | 
			
		||||
  print('value error')
 | 
			
		||||
 | 
			
		||||
mod_nested_if, ctx_nested_if = nested_if.compile_to_ttir(2, 4, 3, grid=(1,))
 | 
			
		||||
mod_nested_if.dump()
 | 
			
		||||
							
								
								
									
										52
									
								
								rewrite-test/jit/vecadd-loop.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										52
									
								
								rewrite-test/jit/vecadd-loop.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,52 @@
 | 
			
		||||
import torch
 | 
			
		||||
import triton
 | 
			
		||||
import triton.language as tl
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@triton.jit
 | 
			
		||||
def add_kernel(
 | 
			
		||||
    x_ptr,  # *Pointer* to first input vector
 | 
			
		||||
    y_ptr,  # *Pointer* to second input vector
 | 
			
		||||
    output_ptr,  # *Pointer* to output vector
 | 
			
		||||
    n_elements,  # Size of the vector
 | 
			
		||||
    K,
 | 
			
		||||
    stride
 | 
			
		||||
    # BLOCK_SIZE: tl.constexpr,  # Number of elements each program should process
 | 
			
		||||
    #              # NOTE: `constexpr` so it can be used as a shape value
 | 
			
		||||
):
 | 
			
		||||
    # There are multiple 'program's processing different data. We identify which program
 | 
			
		||||
    # we are here
 | 
			
		||||
    pid = tl.program_id(axis=0)  # We use a 1D launch grid so axis is 0
 | 
			
		||||
    # This program will process inputs that are offset from the initial data.
 | 
			
		||||
    # for instance, if you had a vector of length 256 and block_size of 64, the programs
 | 
			
		||||
    # would each access the elements [0:64, 64:128, 128:192, 192:256].
 | 
			
		||||
    # Note that offsets is a list of pointers
 | 
			
		||||
    block_start = pid * 256
 | 
			
		||||
    offsets = block_start + tl.arange(0, 256)
 | 
			
		||||
    # Create a mask to guard memory operations against out-of-bounds accesses
 | 
			
		||||
    mask = offsets < n_elements
 | 
			
		||||
 | 
			
		||||
    x_ptrs = x_ptr + offsets
 | 
			
		||||
    y_ptrs = y_ptr + offsets
 | 
			
		||||
    output = tl.zeros((256,), dtype=tl.float32)
 | 
			
		||||
    for k in range(0, K, 32):
 | 
			
		||||
        x = tl.load(x_ptrs, mask=mask, other=0.0)
 | 
			
		||||
        y = tl.load(y_ptrs, mask=mask, other=0.0)
 | 
			
		||||
        output += x + y
 | 
			
		||||
 | 
			
		||||
        x_ptrs += stride
 | 
			
		||||
        y_ptrs += stride
 | 
			
		||||
 | 
			
		||||
    # Write x + y back to DRAM
 | 
			
		||||
    tl.store(output_ptr + offsets, output, mask=mask)
 | 
			
		||||
 | 
			
		||||
size = 1024
 | 
			
		||||
x = torch.rand(size, device='cuda')
 | 
			
		||||
y = torch.rand(size, device='cuda')
 | 
			
		||||
z = torch.empty_like(x)
 | 
			
		||||
# add_kernel[(1,)](x, y, z, size, 256)
 | 
			
		||||
# print(add_kernel[(1,)].kernel.compile_to_ttir())
 | 
			
		||||
mod, ctx = add_kernel.compile_to_ttir(x, y, z, size, 128, 8, grid=(1,))
 | 
			
		||||
mod.get_context()
 | 
			
		||||
mod.dump()
 | 
			
		||||
# print(mod)
 | 
			
		||||
		Reference in New Issue
	
	Block a user