This commit is contained in:
Yan Da
2022-04-04 12:59:54 +08:00
parent 0f96da336a
commit 76d9249724
2 changed files with 101 additions and 0 deletions

View File

@@ -0,0 +1,49 @@
import triton
@triton.jit
def if_else(lb, ub, value):
if value > lb:
a = 0.0
else:
a = 1.0
c = a + a
@triton.jit
def only_if(lb, ub, value):
a = -1.0
if value > lb:
a = 0.0
c = a + a
@triton.jit
def only_if_invalid(lb, ub, value):
if value > lb:
a = 0.0
c = a + a
@triton.jit
def nested_if(lb, ub, value):
if value > lb:
if value < ub:
a = 2.0
else:
a = 1.0
else:
a = 0.0
c = a + a
mod_if_else, ctx_if_else = if_else.compile_to_ttir(2, 4, 3, grid=(1,))
mod_if_else.dump()
mod_only_if, ctx_only_if = only_if.compile_to_ttir(2, 4, 3, grid=(1,))
mod_only_if.dump()
try:
mod_only_if_invalid, ctx_only_if = only_if_invalid.compile_to_ttir(2, 4, 3, grid=(1,))
mod_only_if_invalid.dump()
except:
print('value error')
mod_nested_if, ctx_nested_if = nested_if.compile_to_ttir(2, 4, 3, grid=(1,))
mod_nested_if.dump()

View File

@@ -0,0 +1,52 @@
import torch
import triton
import triton.language as tl
@triton.jit
def add_kernel(
x_ptr, # *Pointer* to first input vector
y_ptr, # *Pointer* to second input vector
output_ptr, # *Pointer* to output vector
n_elements, # Size of the vector
K,
stride
# BLOCK_SIZE: tl.constexpr, # Number of elements each program should process
# # NOTE: `constexpr` so it can be used as a shape value
):
# There are multiple 'program's processing different data. We identify which program
# we are here
pid = tl.program_id(axis=0) # We use a 1D launch grid so axis is 0
# This program will process inputs that are offset from the initial data.
# for instance, if you had a vector of length 256 and block_size of 64, the programs
# would each access the elements [0:64, 64:128, 128:192, 192:256].
# Note that offsets is a list of pointers
block_start = pid * 256
offsets = block_start + tl.arange(0, 256)
# Create a mask to guard memory operations against out-of-bounds accesses
mask = offsets < n_elements
x_ptrs = x_ptr + offsets
y_ptrs = y_ptr + offsets
output = tl.zeros((256,), dtype=tl.float32)
for k in range(0, K, 32):
x = tl.load(x_ptrs, mask=mask, other=0.0)
y = tl.load(y_ptrs, mask=mask, other=0.0)
output += x + y
x_ptrs += stride
y_ptrs += stride
# Write x + y back to DRAM
tl.store(output_ptr + offsets, output, mask=mask)
size = 1024
x = torch.rand(size, device='cuda')
y = torch.rand(size, device='cuda')
z = torch.empty_like(x)
# add_kernel[(1,)](x, y, z, size, 256)
# print(add_kernel[(1,)].kernel.compile_to_ttir())
mod, ctx = add_kernel.compile_to_ttir(x, y, z, size, 128, 8, grid=(1,))
mod.get_context()
mod.dump()
# print(mod)