Better initialization
This commit is contained in:
@@ -27,7 +27,6 @@ def b_gray_to_bin(A='00000000', endian='big'):
|
|||||||
if endian == 'little': A = A[::-1] # Make sure endianness is big before conversion
|
if endian == 'little': A = A[::-1] # Make sure endianness is big before conversion
|
||||||
b = A[0]
|
b = A[0]
|
||||||
for i in range(1, len(A)): b += str( int(b[i-1] != A[i]) )
|
for i in range(1, len(A)): b += str( int(b[i-1] != A[i]) )
|
||||||
assert len(A) == len(b), 'Error in this function! len(A) must equal len(b). Oh dear.'
|
|
||||||
if endian == 'little': b = b[::-1] # Convert back to little endian if necessary
|
if endian == 'little': b = b[::-1] # Convert back to little endian if necessary
|
||||||
return b
|
return b
|
||||||
|
|
||||||
@@ -42,7 +41,7 @@ class GeneticOperators(object):
|
|||||||
self.ParameterType = TemplateType.Parameters
|
self.ParameterType = TemplateType.Parameters
|
||||||
self.build_template = build_template
|
self.build_template = build_template
|
||||||
self.cache = {}
|
self.cache = {}
|
||||||
self.indpb = 0.1
|
self.indpb = 0.05
|
||||||
|
|
||||||
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
|
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
|
||||||
creator.create("Individual", list, fitness=creator.FitnessMin)
|
creator.create("Individual", list, fitness=creator.FitnessMin)
|
||||||
@@ -52,7 +51,7 @@ class GeneticOperators(object):
|
|||||||
self.toolbox.register("evaluate", self.evaluate)
|
self.toolbox.register("evaluate", self.evaluate)
|
||||||
self.toolbox.register("mate", deap_tools.cxTwoPoint)
|
self.toolbox.register("mate", deap_tools.cxTwoPoint)
|
||||||
self.toolbox.register("mutate", self.mutate)
|
self.toolbox.register("mutate", self.mutate)
|
||||||
self.toolbox.register("select", deap_tools.selBest)
|
self.toolbox.register("select", deap_tools.selNSGA2)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def decode(s):
|
def decode(s):
|
||||||
@@ -78,12 +77,11 @@ class GeneticOperators(object):
|
|||||||
|
|
||||||
def init(self, N):
|
def init(self, N):
|
||||||
result = []
|
result = []
|
||||||
|
fetchcount = [0, 0, 0]
|
||||||
|
while len(result) < N:
|
||||||
def generate(Afetch, Bfetch, K):
|
while True:
|
||||||
result = []
|
fetch = random.randint(0,2)
|
||||||
while len(result) < K:
|
bincode = [fetch, fetch] + [str(random.randint(0,1)) for i in range(23)]
|
||||||
bincode = [Afetch, Bfetch] + [str(random.randint(0,1)) for i in range(23)]
|
|
||||||
parameters = self.decode(bincode)
|
parameters = self.decode(bincode)
|
||||||
template = self.build_template(self.TemplateType.Parameters(*parameters))
|
template = self.build_template(self.TemplateType.Parameters(*parameters))
|
||||||
registers_usage = template.registers_usage(vcl.atidlas.StatementsTuple(self.statement))/4
|
registers_usage = template.registers_usage(vcl.atidlas.StatementsTuple(self.statement))/4
|
||||||
@@ -91,26 +89,26 @@ class GeneticOperators(object):
|
|||||||
local_size = template.parameters.local_size_0*template.parameters.local_size_1
|
local_size = template.parameters.local_size_0*template.parameters.local_size_1
|
||||||
occupancy_record = tools.OccupancyRecord(self.device, local_size, lmem_usage, registers_usage)
|
occupancy_record = tools.OccupancyRecord(self.device, local_size, lmem_usage, registers_usage)
|
||||||
if not tools.skip(template, self.statement, self.device):
|
if not tools.skip(template, self.statement, self.device):
|
||||||
|
fetchcount[fetch] = fetchcount[fetch] + 1
|
||||||
|
if max(fetchcount) - min(fetchcount) <= 1:
|
||||||
result.append(creator.Individual(bincode))
|
result.append(creator.Individual(bincode))
|
||||||
return result
|
break
|
||||||
|
else:
|
||||||
result += generate(0,0,N/3)
|
fetchcount[fetch] = fetchcount[fetch] - 1
|
||||||
result += generate(1,1,N/3)
|
|
||||||
result += generate(2,2,N/3)
|
|
||||||
|
|
||||||
return result
|
return result
|
||||||
|
|
||||||
def mutate(self, individual):
|
def mutate(self, individual):
|
||||||
while True:
|
while True:
|
||||||
new_individual = copy.deepcopy(individual)
|
new_individual = copy.deepcopy(individual)
|
||||||
for i in range(len(new_individual)):
|
for i in range(len(new_individual)):
|
||||||
if i < 2 and random.random() < self.indpb:
|
if i < 2 and random.random() < 0.1:
|
||||||
while new_individual[i] == individual[i]:
|
while new_individual[i] == individual[i]:
|
||||||
new_individual[i] = random.randint(0, 2)
|
new_individual[i] = random.randint(0, 2)
|
||||||
elif i >= 2 and random.random() < self.indpb:
|
elif i >= 2 and random.random() < self.indpb:
|
||||||
new_individual[i] = '1' if new_individual[i]=='0' else '0'
|
new_individual[i] = '1' if new_individual[i]=='0' else '0'
|
||||||
parameters = self.decode(new_individual)
|
parameters = self.decode(new_individual)
|
||||||
template = self.build_template(self.TemplateType.Parameters(*parameters))
|
template = self.build_template(self.TemplateType.Parameters(*parameters))
|
||||||
|
#print tools.skip(template, self.statement, self.device), parameters
|
||||||
if not tools.skip(template, self.statement, self.device):
|
if not tools.skip(template, self.statement, self.device):
|
||||||
break
|
break
|
||||||
return new_individual,
|
return new_individual,
|
||||||
@@ -133,10 +131,10 @@ class GeneticOperators(object):
|
|||||||
maxtime = maxtime.tm_min*60 + maxtime.tm_sec
|
maxtime = maxtime.tm_min*60 + maxtime.tm_sec
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
|
|
||||||
mu = 30
|
mu = 70
|
||||||
_lambda = 50
|
_lambda = 100
|
||||||
cxpb = 0.4
|
cxpb = 0.2
|
||||||
mutpb = 0.5
|
mutpb = 0.7
|
||||||
|
|
||||||
population = self.init(mu)
|
population = self.init(mu)
|
||||||
invalid_ind = [ind for ind in population if not ind.fitness.valid]
|
invalid_ind = [ind for ind in population if not ind.fitness.valid]
|
||||||
@@ -174,7 +172,7 @@ class GeneticOperators(object):
|
|||||||
gen = gen + 1
|
gen = gen + 1
|
||||||
best_profile = '(%s)'%','.join(map(str,GeneticOperators.decode(hof[0])));
|
best_profile = '(%s)'%','.join(map(str,GeneticOperators.decode(hof[0])));
|
||||||
best_performance = compute_perf(hof[0].fitness.values[0])
|
best_performance = compute_perf(hof[0].fitness.values[0])
|
||||||
sys.stdout.write('Generation %d | Time %d | Best %d %s [ for %s ]\n'%(gen, time.time() - start_time, best_performance, perf_metric, best_profile))
|
sys.stdout.write('Time %d | Best %d %s [ for %s ]\r'%(time.time() - start_time, best_performance, perf_metric, best_profile))
|
||||||
sys.stdout.flush()
|
sys.stdout.flush()
|
||||||
sys.stdout.write('\n')
|
sys.stdout.write('\n')
|
||||||
return population
|
return population
|
||||||
|
Reference in New Issue
Block a user