[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-08-27 00:48:56 +00:00
parent 65cfbbabe5
commit 79bb9e69b7
163 changed files with 278 additions and 278 deletions

View File

@@ -321,10 +321,10 @@ for different problem sizes.</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>vector-add-performance:
size Triton Torch
0 4096.0 9.600000 9.600000
0 4096.0 8.000000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 63.999998 63.999998
3 32768.0 76.800002 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 384.000001
@@ -339,7 +339,7 @@ for different problem sizes.</p>
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 42.557 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 32.117 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -376,15 +376,15 @@ We will then compare its performance against (1) <code class="code docutils lite
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 188.321838
1 384.0 614.400016 585.142862 153.600004
2 512.0 655.360017 606.814814 154.566038
3 640.0 682.666684 640.000002 158.759699
2 512.0 655.360017 585.142849 154.566038
3 640.0 682.666684 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 814.058574 406.179533 198.733401
94 12288.0 814.111783 416.101597 199.096718
95 12416.0 812.498981 412.149375 198.655991
96 12544.0 812.566838 412.546756 198.913776
97 12672.0 812.633240 412.097543 199.069228
93 12160.0 814.058574 406.179533 198.936606
94 12288.0 814.111783 415.661740 199.197579
95 12416.0 812.498981 412.149375 198.954424
96 12544.0 812.566838 412.971190 199.209928
97 12672.0 812.633240 412.097543 199.264875
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 23.007 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 20.245 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -568,42 +568,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.978909 ... 3.276800 2.978909
0 256.0 2.730667 ... 2.978909 2.978909
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 16.384000
2 512.0 14.563555 ... 16.384000 15.420235
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 51.150050 ... 52.428801 52.428801
7 1152.0 45.242181 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.888887
9 1408.0 64.138541 ... 67.305878 67.305878
10 1536.0 80.430545 ... 79.526831 79.526831
11 1664.0 63.372618 ... 62.492442 62.061463
12 1792.0 72.983276 ... 71.588687 71.588687
13 1920.0 68.776119 ... 70.530615 70.530615
14 2048.0 73.908442 ... 77.314362 76.959706
15 2176.0 83.155572 ... 85.998493 85.632545
8 1280.0 51.200001 ... 56.888887 56.109587
9 1408.0 64.138541 ... 67.305878 66.485074
10 1536.0 80.430545 ... 79.526831 78.643199
11 1664.0 62.929456 ... 62.061463 62.061463
12 1792.0 72.512412 ... 71.588687 71.588687
13 1920.0 69.120002 ... 70.530615 70.530615
14 2048.0 73.908442 ... 76.959706 76.959706
15 2176.0 83.155572 ... 86.367588 85.632545
16 2304.0 68.251065 ... 76.809875 76.563695
17 2432.0 71.305746 ... 85.393507 85.134737
17 2432.0 71.305746 ... 85.393507 84.367759
18 2560.0 78.019048 ... 80.908642 81.108913
19 2688.0 83.369354 ... 89.888756 89.044730
20 2816.0 83.552120 ... 83.712490 82.759409
21 2944.0 81.564701 ... 81.698415 81.832567
22 3072.0 82.062468 ... 88.473602 88.335577
23 3200.0 84.544253 ... 95.238096 95.096582
24 3328.0 83.130825 ... 84.101981 84.003845
25 3456.0 79.430113 ... 88.595129 88.400840
26 3584.0 87.296493 ... 98.160909 98.160909
27 3712.0 82.423549 ... 88.561477 85.822459
28 3840.0 84.809814 ... 92.006659 87.286505
29 3968.0 93.148045 ... 82.953048 80.917732
30 4096.0 93.045216 ... 92.884244 88.243079
19 2688.0 83.737433 ... 89.044730 88.628636
20 2816.0 79.587973 ... 82.916747 83.233226
21 2944.0 81.564701 ... 82.373605 82.921853
22 3072.0 82.181572 ... 89.451983 87.313963
23 3200.0 83.116885 ... 92.753621 91.298148
24 3328.0 80.617354 ... 84.895397 84.596116
25 3456.0 82.099354 ... 91.097818 90.586029
26 3584.0 82.189576 ... 91.563533 95.047985
27 3712.0 85.309435 ... 90.981189 87.170458
28 3840.0 81.079177 ... 85.070769 91.097196
29 3968.0 85.752131 ... 91.266964 85.751184
30 4096.0 93.336389 ... 92.245860 88.243079
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 25.861 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 16.690 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -194,36 +194,36 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 311.088617 99.096776 307.200008
0 1024.0 311.088617 99.096776 311.088617
1 1536.0 351.085717 133.083026 338.201833
2 2048.0 423.724127 162.217818 325.509933
3 2560.0 461.954908 182.857144 326.808501
4 3072.0 511.999982 191.501303 317.793096
5 3584.0 554.941930 208.271186 308.301075
6 4096.0 568.231237 220.412561 294.323343
7 4608.0 498.162157 231.849059 291.031570
8 5120.0 525.128191 242.845844 287.102804
9 5632.0 538.517949 243.107920 291.310338
10 6144.0 544.118087 248.661056 286.322318
11 6656.0 527.207907 256.000009 286.793541
12 7168.0 505.976473 262.243907 288.644296
13 7680.0 482.513091 260.707203 277.172933
14 8192.0 460.440290 268.957600 286.600589
2 2048.0 423.724127 161.684218 338.979315
3 2560.0 461.954908 182.314537 323.368411
4 3072.0 511.999982 191.005181 319.168834
5 3584.0 554.941930 208.271186 306.106777
6 4096.0 568.231237 219.919464 292.571431
7 4608.0 498.162157 231.849059 289.507855
8 5120.0 525.128191 242.845844 283.787523
9 5632.0 538.517949 243.107920 290.683877
10 6144.0 542.117638 248.661056 286.322318
11 6656.0 527.207907 256.000009 286.279570
12 7168.0 505.976473 262.243907 288.160801
13 7680.0 481.253256 260.707203 277.172933
14 8192.0 460.440290 269.326017 286.600589
15 8704.0 416.958106 267.815384 284.987724
16 9216.0 428.651187 273.066667 289.507855
17 9728.0 439.683593 280.278512 288.950501
17 9728.0 438.857162 280.615388 288.950501
18 10240.0 447.650282 286.433562 290.153487
19 10752.0 429.364408 246.464170 290.267711
20 11264.0 429.445578 245.091565 285.767446
21 11776.0 421.826879 249.227509 288.686414
22 12288.0 420.102570 254.453844 295.207195
23 12800.0 415.696898 253.465340 288.180121
19 10752.0 430.079980 246.464170 290.267711
20 11264.0 429.786952 245.091565 285.767446
21 11776.0 421.198220 249.227509 288.686414
22 12288.0 420.102570 254.453844 294.911986
23 12800.0 415.135142 253.465340 289.811310
24 13312.0 412.242569 252.559690 290.179836
25 13824.0 405.098897 257.390218 292.571423
26 14336.0 397.761846 254.673567 286.481278
27 14848.0 383.586664 257.293872 289.246765
28 15360.0 374.253788 257.610071 286.433562
29 15872.0 366.982663 262.708969 291.229369
26 14336.0 398.222222 254.862216 286.481278
27 14848.0 384.414233 257.293872 289.246765
28 15360.0 374.634130 257.610071 287.550706
29 15872.0 366.805973 262.708969 291.229369
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 11.602 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 12.483 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>12:43.037</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>12:21.546</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,19 +183,19 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:25.861</p></td>
<td><p>05:16.690</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:23.007</p></td>
<td><p>03:20.245</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:11.602</p></td>
<td><p>02:12.483</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:42.557</p></td>
<td><p>01:32.117</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>