the pipeline pass now generates and accepts valid IR

This commit is contained in:
Yan Da
2022-06-07 19:34:59 +08:00
parent 560e29229b
commit 7b09b5f9e9
4 changed files with 82 additions and 37 deletions

View File

@@ -2,6 +2,7 @@
#include "triton/Dialect/Triton/IR/Dialect.h"
#include "triton/Dialect/TritonGPU/IR/Dialect.h"
#include <algorithm>
#include <llvm-6.0/llvm/Support/ErrorHandling.h>
using namespace mlir;
@@ -22,11 +23,13 @@ TritonGPUTypeConverter::TritonGPUTypeConverter(MLIRContext *context,
int64_t rank = tensorType.getRank();
int64_t numElements = tensorType.getNumElements();
// TODO: we should raise exception here.
if (!(numElements >= numThreads)) {
llvm::errs() << tensorType << " has " << numElements << " numElements "
<< " smaller than numThreads (" << numThreads << ")";
assert(false);
SmallVector<char> buffer;
llvm::raw_svector_ostream os(buffer);
os << tensorType << " has " << numElements << " numElements "
<< " smaller than numThreads (" << numThreads << ")\n"
<< "consider using smaller num-warps\n";
llvm::report_fatal_error(os.str());
}
assert(numElements % numThreads == 0);
@@ -35,6 +38,7 @@ TritonGPUTypeConverter::TritonGPUTypeConverter(MLIRContext *context,
// Now we assume:
// contiguous = 1, order = 0, 1, 2, ...,
llvm::SmallVector<unsigned> threadTileSize(rank, 1); // naive layout
// TODO: compute warpTileSize.
llvm::SmallVector<unsigned> warpTileSize(rank, 1);
llvm::SmallVector<unsigned> blockTileSize(rank);
llvm::SmallVector<unsigned> order(rank);
@@ -93,17 +97,17 @@ TritonGPUConversionTarget::TritonGPUConversionTarget(
});
// // We have requirements for the data layouts
// addDynamicallyLegalOp<triton::DotOp>([this](triton::DotOp dotOp) -> bool {
// Attribute aEncoding = dotOp.a().getType().cast<RankedTensorType>().getEncoding();
// Attribute bEncoding = dotOp.b().getType().cast<RankedTensorType>().getEncoding();
// if (aEncoding && aEncoding.isa<triton::gpu::TritonGPUSharedEncodingAttr>() &&
// bEncoding && bEncoding.isa<triton::gpu::TritonGPUSharedEncodingAttr>())
// return true;
// // TODO: we should delete this
// if (this->typeConverter.isLegal(dotOp))
// return true;
// return false;
// });
// We have requirements for the data layouts
addDynamicallyLegalOp<triton::DotOp>([this](triton::DotOp dotOp) -> bool {
Attribute aEncoding = dotOp.a().getType().cast<RankedTensorType>().getEncoding();
Attribute bEncoding = dotOp.b().getType().cast<RankedTensorType>().getEncoding();
if (aEncoding && aEncoding.isa<triton::gpu::TritonGPUSharedEncodingAttr>() &&
bEncoding && bEncoding.isa<triton::gpu::TritonGPUSharedEncodingAttr>())
return true;
// TODO: we should delete this
if (this->typeConverter.isLegal(dotOp))
return true;
return false;
});
}