[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-02-11 00:40:00 +00:00
parent 30f8e01add
commit 7c47f3e043
158 changed files with 262 additions and 262 deletions

View File

@@ -334,12 +334,12 @@ for different problem sizes.</p>
10 4194304.0 780.190482 780.190482
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
13 33554432.0 842.004273 842.906750
13 33554432.0 842.004273 842.004273
14 67108864.0 847.448255 848.362445
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 45.886 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 46.901 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,17 +374,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 190.511628
1 384.0 614.400016 585.142862 153.600004
0 256.0 512.000001 546.133347 186.181817
1 384.0 585.142862 585.142862 153.600004
2 512.0 655.360017 606.814814 154.566038
3 640.0 682.666684 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 814.058574 406.179533 198.530610
94 12288.0 814.111783 415.661740 198.694297
95 12416.0 812.498981 412.149375 198.358474
96 12544.0 812.566838 412.971190 198.618504
97 12672.0 812.633240 412.097543 198.581788
93 12160.0 814.058574 406.179533 198.733401
94 12288.0 814.111783 415.661740 198.995960
95 12416.0 812.498981 412.149375 198.556711
96 12544.0 812.566838 413.396498 198.716830
97 12672.0 812.633240 411.679167 198.776477
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 24.871 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 24.753 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -568,42 +568,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.978909 ... 3.276800 3.276800
0 256.0 2.730667 ... 3.276800 2.978909
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 51.150050 ... 53.773130 52.428801
6 1024.0 51.150050 ... 52.428801 52.428801
7 1152.0 45.242181 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.888887
9 1408.0 64.138541 ... 67.305878 66.485074
10 1536.0 79.526831 ... 79.526831 79.526831
11 1664.0 62.929456 ... 62.492442 62.061463
10 1536.0 80.430545 ... 79.526831 78.643199
11 1664.0 62.929456 ... 62.061463 62.061463
12 1792.0 72.512412 ... 72.047592 71.588687
13 1920.0 69.467336 ... 70.172588 69.818184
14 2048.0 73.584279 ... 76.959706 76.959706
15 2176.0 83.500614 ... 85.632545 85.269692
16 2304.0 68.446623 ... 76.809875 76.563695
17 2432.0 71.305746 ... 84.877538 84.877538
18 2560.0 78.019048 ... 81.008654 80.908642
13 1920.0 69.120002 ... 70.172588 69.818184
14 2048.0 73.584279 ... 76.608294 76.608294
15 2176.0 82.813365 ... 85.998493 85.269692
16 2304.0 68.446623 ... 76.809875 76.319081
17 2432.0 71.305746 ... 74.521127 84.367759
18 2560.0 77.833728 ... 81.310171 80.908642
19 2688.0 83.186525 ... 89.676257 89.464755
20 2816.0 83.873477 ... 82.759409 81.981598
21 2944.0 82.373605 ... 82.373605 81.298583
22 3072.0 81.238312 ... 88.612060 89.030036
23 3200.0 83.989503 ... 95.096582 93.979441
24 3328.0 83.130825 ... 84.397770 83.710812
25 3456.0 81.766291 ... 83.893412 90.382926
26 3584.0 87.211821 ... 98.483450 92.505546
27 3712.0 84.230479 ... 88.718781 84.017953
28 3840.0 84.421376 ... 91.398346 87.286505
29 3968.0 92.093539 ... 84.447457 87.787005
30 4096.0 91.678778 ... 92.691803 86.258181
20 2816.0 83.552120 ... 82.135981 82.602666
21 2944.0 81.832567 ... 82.509987 82.373605
22 3072.0 81.825298 ... 86.845249 83.146995
23 3200.0 84.600132 ... 94.955488 94.534716
24 3328.0 83.710812 ... 82.275764 83.808259
25 3456.0 81.849303 ... 87.347312 88.986281
26 3584.0 87.722333 ... 90.368655 95.654673
27 3712.0 85.528545 ... 84.230479 85.822459
28 3840.0 84.940091 ... 92.313853 84.230487
29 3968.0 92.232760 ... 81.186915 84.680037
30 4096.0 93.336389 ... 92.309303 85.163532
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 33.411 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 49.922 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -371,7 +371,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.010 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.110 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -194,36 +194,36 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 311.088617 98.303995 303.407414
0 1024.0 307.200008 98.303995 303.407414
1 1536.0 351.085717 134.540150 341.333333
2 2048.0 423.724127 161.684218 334.367350
3 2560.0 461.954908 181.238943 330.322572
4 3072.0 511.999982 191.999993 320.556515
5 3584.0 551.384634 208.271186 310.527060
6 4096.0 568.231237 220.412561 298.796351
4 3072.0 515.580429 191.999993 320.556515
5 3584.0 549.623009 208.271186 311.652167
6 4096.0 568.231237 219.919464 299.707322
7 4608.0 500.416301 232.825259 286.507772
8 5120.0 525.128191 242.845844 285.104413
9 5632.0 540.671974 243.545956 289.438969
8 5120.0 525.128191 242.366855 285.104413
9 5632.0 540.671974 243.107920 289.438969
10 6144.0 542.117638 248.242431 285.767458
11 6656.0 530.710976 256.000009 285.767438
12 7168.0 505.976473 260.654538 286.242939
13 7680.0 481.253256 262.564106 279.272719
13 7680.0 481.253256 262.190612 275.104486
14 8192.0 462.607053 267.130429 284.939124
15 8704.0 417.791980 267.815384 284.987724
16 9216.0 429.483477 272.394084 288.751954
17 9728.0 438.857162 280.278512 289.667485
18 10240.0 447.650282 286.433562 290.496460
19 10752.0 428.651173 247.172406 290.594591
20 11264.0 429.786952 245.536784 286.676558
21 11776.0 423.089806 249.888595 288.981596
15 8704.0 417.791980 267.472468 284.599455
16 9216.0 430.319054 272.394084 288.751954
17 9728.0 438.033784 280.278512 289.667485
18 10240.0 447.650282 286.100109 287.438599
19 10752.0 428.651173 246.935876 290.594591
20 11264.0 429.104745 245.536784 286.676558
21 11776.0 423.089806 249.667843 288.981596
22 12288.0 420.102570 254.673582 294.323369
23 12800.0 414.574901 253.674644 288.450715
24 13312.0 412.242569 252.559690 289.916513
23 12800.0 414.574901 253.465340 289.811310
24 13312.0 412.242569 252.959629 289.916513
25 13824.0 406.090579 257.190689 292.056329
26 14336.0 395.930964 254.297107 286.719986
27 14848.0 386.918555 257.665934 289.481735
28 15360.0 373.117425 257.970599 287.326580
29 15872.0 370.192407 261.806182 289.899545
26 14336.0 396.387109 254.297107 286.959121
27 14848.0 386.498925 257.665934 289.246765
28 15360.0 373.117425 257.790220 287.102804
29 15872.0 369.832994 261.626369 289.899545
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 13.521 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 12.432 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>12:57.700</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>13:14.119</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,23 +183,23 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:33.411</p></td>
<td><p>05:49.922</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:24.871</p></td>
<td><p>03:24.753</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:13.521</p></td>
<td><p>02:12.432</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:45.886</p></td>
<td><p>01:46.901</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.010</p></td>
<td><p>00:00.110</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>