[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-02-14 00:38:35 +00:00
parent 13537582ad
commit 819da42584
158 changed files with 248 additions and 248 deletions

View File

@@ -334,12 +334,12 @@ for different problem sizes.</p>
10 4194304.0 780.190482 780.190482
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
13 33554432.0 842.004273 843.811163
13 33554432.0 842.004273 842.004273
14 67108864.0 847.448255 848.362445
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 46.080 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 43.227 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,17 +374,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 188.321838
0 256.0 512.000001 546.133347 186.181817
1 384.0 585.142862 585.142862 153.600004
2 512.0 655.360017 606.814814 154.566038
3 640.0 682.666684 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 814.058574 406.179533 198.530610
94 12288.0 814.111783 415.222812 198.794749
95 12416.0 812.498981 412.149375 198.358474
96 12544.0 812.566838 413.396498 198.716830
97 12672.0 812.633240 412.097543 198.776477
93 12160.0 814.058574 406.179533 199.038365
94 12288.0 814.111783 415.222812 199.197579
95 12416.0 812.498981 412.149375 198.755369
96 12544.0 812.566838 412.971190 199.111113
97 12672.0 812.633240 411.679167 199.167004
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 25.043 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 21.808 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -569,41 +569,41 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 3.276800 2.978909
1 384.0 7.372800 ... 8.507077 8.507077
1 384.0 7.372800 ... 7.899428 7.899428
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 51.150050 ... 53.773130 52.428801
7 1152.0 45.242181 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.109587
9 1408.0 64.138541 ... 67.305878 66.485074
10 1536.0 80.430545 ... 79.526831 78.643199
11 1664.0 62.929456 ... 62.492442 62.061463
12 1792.0 72.512412 ... 72.512412 71.588687
13 1920.0 69.120002 ... 70.172588 70.172588
14 2048.0 73.584279 ... 76.959706 76.608294
15 2176.0 83.155572 ... 85.998493 85.269692
16 2304.0 68.446623 ... 77.057651 76.319081
17 2432.0 71.305746 ... 85.134737 84.877538
18 2560.0 78.019048 ... 80.908642 81.108913
19 2688.0 83.004501 ... 89.888756 89.464755
20 2816.0 83.233226 ... 83.552120 81.904619
21 2944.0 82.784108 ... 81.034195 81.431424
22 3072.0 82.062468 ... 88.612060 88.473602
23 3200.0 83.009080 ... 95.238096 94.955488
24 3328.0 83.808259 ... 84.695641 84.496824
25 3456.0 81.108217 ... 84.820164 89.480098
26 3584.0 87.381330 ... 94.997774 90.188780
27 3712.0 85.019017 ... 86.192706 86.491211
28 3840.0 80.255442 ... 85.399230 91.701494
29 3968.0 87.913500 ... 90.994735 83.751926
30 4096.0 92.627833 ... 85.434583 82.441739
8 1280.0 51.200001 ... 56.888887 56.888887
9 1408.0 64.138541 ... 67.305878 67.305878
10 1536.0 80.430545 ... 79.526831 79.526831
11 1664.0 62.929456 ... 62.929456 62.061463
12 1792.0 72.983276 ... 72.512412 72.047592
13 1920.0 68.776119 ... 70.172588 70.172588
14 2048.0 73.584279 ... 76.608294 76.608294
15 2176.0 83.155572 ... 85.632545 84.909907
16 2304.0 68.643310 ... 76.809875 76.563695
17 2432.0 71.305746 ... 85.393507 84.877538
18 2560.0 78.019048 ... 80.908642 80.709358
19 2688.0 83.186525 ... 89.676257 89.464755
20 2816.0 83.074685 ... 83.074685 82.759409
21 2944.0 81.832567 ... 80.640830 81.298583
22 3072.0 82.181572 ... 88.750943 86.712254
23 3200.0 83.989503 ... 93.704243 94.256261
24 3328.0 82.369902 ... 83.808259 83.613586
25 3456.0 77.820048 ... 86.318594 89.183149
26 3584.0 87.042978 ... 92.696281 94.448944
27 3712.0 85.675250 ... 85.091436 88.170647
28 3840.0 83.591840 ... 88.332269 91.625518
29 3968.0 86.114283 ... 91.403695 84.915752
30 4096.0 93.271527 ... 83.468735 84.413665
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 51.018 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 24.995 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -371,7 +371,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.108 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.011 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -194,33 +194,33 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 311.088617 98.303995 303.407414
0 1024.0 307.200008 98.303995 303.407414
1 1536.0 351.085717 134.050910 341.333333
2 2048.0 420.102553 161.684218 325.509933
3 2560.0 461.954908 181.238943 325.079368
4 3072.0 511.999982 192.501302 319.168834
5 3584.0 551.384634 208.271186 311.652167
2 2048.0 420.102553 161.154101 334.367350
3 2560.0 465.454542 181.238943 330.322572
4 3072.0 511.999982 191.999993 320.556515
5 3584.0 551.384634 207.768111 310.527060
6 4096.0 568.231237 219.919464 299.707322
7 4608.0 500.416301 232.825259 286.507772
8 5120.0 525.128191 242.366855 285.104413
9 5632.0 540.671974 243.107920 289.438969
10 6144.0 544.118087 248.242431 285.767458
8 5120.0 525.128191 242.366855 284.444444
9 5632.0 540.671974 243.545956 288.820505
10 6144.0 542.117638 248.242431 285.767458
11 6656.0 530.710976 256.000009 285.767438
12 7168.0 505.976473 260.654538 286.242939
13 7680.0 481.253256 262.564106 279.272719
14 8192.0 462.607053 267.130429 284.526763
15 8704.0 417.791980 267.815384 284.987724
16 9216.0 430.319054 272.059034 288.751954
17 9728.0 438.033784 280.278512 289.667485
16 9216.0 430.319054 272.394084 288.751954
17 9728.0 438.857162 280.278512 289.667485
18 10240.0 447.650282 286.433562 290.496460
19 10752.0 428.651173 247.172406 290.922209
20 11264.0 429.104745 245.536784 286.676558
21 11776.0 422.457417 249.667843 288.686414
22 12288.0 420.102570 254.453844 294.323369
21 11776.0 423.089806 249.667843 288.686414
22 12288.0 420.102570 254.673582 294.323369
23 12800.0 414.574901 253.465340 289.811310
24 13312.0 412.242569 252.759501 289.916513
25 13824.0 406.090579 257.190689 291.799461
26 14336.0 395.930964 254.297107 286.959121
24 13312.0 412.775186 252.559690 289.916513
25 13824.0 406.090579 257.190689 292.056329
26 14336.0 395.930964 254.297107 286.719986
27 14848.0 386.498925 257.665934 289.246765
28 15360.0 373.495460 257.790220 287.102804
29 15872.0 370.192407 261.626369 289.899545
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 12.343 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 12.626 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>13:14.591</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>12:42.667</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,23 +183,23 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:51.018</p></td>
<td><p>05:24.995</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:25.043</p></td>
<td><p>03:21.808</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:12.343</p></td>
<td><p>02:12.626</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:46.080</p></td>
<td><p>01:43.227</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.108</p></td>
<td><p>00:00.011</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>