[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-04-15 00:42:31 +00:00
parent 2a53636c23
commit 824d060dfb
158 changed files with 300 additions and 300 deletions

View File

@@ -322,12 +322,12 @@ for different problem sizes.</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>vector-add-performance:
size Triton Torch
0 4096.0 9.600000 9.600000
1 8192.0 15.999999 19.200000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 76.800002 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 341.333321
6 262144.0 341.333321 384.000001
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 702.171410
@@ -336,10 +336,10 @@ for different problem sizes.</p>
12 16777216.0 833.084721 833.084721
13 33554432.0 842.004273 842.004273
14 67108864.0 847.448255 848.362445
15 134217728.0 849.737435 850.656574
15 134217728.0 850.196756 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 43.436 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 44.439 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,17 +374,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 186.181817
1 384.0 585.142862 585.142862 149.853661
0 256.0 512.000001 546.133347 188.321838
1 384.0 585.142862 585.142862 151.703707
2 512.0 655.360017 585.142849 154.566038
3 640.0 682.666684 640.000002 158.759699
4 768.0 722.823517 646.736871 162.754967
.. ... ... ... ...
93 12160.0 812.359066 406.179533 198.733401
93 12160.0 812.359066 406.179533 198.834951
94 12288.0 814.111783 416.101597 199.096718
95 12416.0 814.163950 412.577363 198.755369
96 12544.0 812.566838 412.971190 198.913776
97 12672.0 812.633240 412.516771 199.069228
96 12544.0 812.566838 413.183734 198.913776
97 12672.0 812.633240 412.097543 199.069228
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 22.222 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 25.535 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -569,9 +569,9 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 2.978909 2.978909
1 384.0 7.372800 ... 7.899428 7.899428
2 512.0 14.563555 ... 15.420235 15.420235
3 640.0 22.260869 ... 24.380953 24.380953
1 384.0 7.372800 ... 8.507077 7.899428
2 512.0 14.563555 ... 16.384000 15.420235
3 640.0 22.260869 ... 24.380953 23.272727
4 768.0 31.597714 ... 34.028308 34.028308
5 896.0 37.971025 ... 39.025776 37.971025
6 1024.0 49.932191 ... 52.428801 51.150050
@@ -580,30 +580,30 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
9 1408.0 62.664092 ... 65.684049 65.684049
10 1536.0 78.643199 ... 77.778988 77.778988
11 1664.0 62.061463 ... 61.217089 60.803457
12 1792.0 71.588687 ... 70.246402 70.246402
13 1920.0 68.098521 ... 68.776119 68.776119
14 2048.0 72.315584 ... 75.234154 75.234154
15 2176.0 81.472263 ... 84.199364 83.500614
16 2304.0 67.100763 ... 75.119093 74.883608
17 2432.0 69.713308 ... 83.614477 83.119713
18 2560.0 76.204654 ... 79.533982 79.341404
19 2688.0 82.823267 ... 88.216412 88.011732
20 2816.0 82.759409 ... 81.827785 81.674548
21 2944.0 81.034195 ... 81.431424 81.166173
22 3072.0 81.121923 ... 87.381335 87.516392
23 3200.0 83.550913 ... 94.814812 94.256261
24 3328.0 82.369902 ... 83.808259 83.613586
25 3456.0 80.783132 ... 90.484366 90.281712
26 3584.0 86.498694 ... 97.840469 97.416461
27 3712.0 84.730571 ... 89.674457 92.156222
28 3840.0 84.228485 ... 91.247522 91.172297
29 3968.0 92.372393 ... 90.555796 90.354633
30 4096.0 93.142072 ... 92.372834 91.678778
12 1792.0 71.588687 ... 71.135597 70.688200
13 1920.0 68.098521 ... 69.120002 69.120002
14 2048.0 72.628641 ... 75.573044 75.234154
15 2176.0 81.803444 ... 84.199364 83.500614
16 2304.0 67.100763 ... 75.119093 75.119093
17 2432.0 69.886725 ... 83.614477 83.119713
18 2560.0 76.204654 ... 79.727497 79.341404
19 2688.0 82.284288 ... 88.216412 88.011732
20 2816.0 82.759409 ... 82.135981 81.674548
21 2944.0 81.166173 ... 81.431424 81.166173
22 3072.0 81.121923 ... 87.381335 86.845249
23 3200.0 83.660130 ... 94.395283 93.910490
24 3328.0 82.181847 ... 83.808259 83.565058
25 3456.0 80.864158 ... 90.484366 90.079964
26 3584.0 86.291162 ... 97.628001 97.575029
27 3712.0 84.730571 ... 87.860458 87.552452
28 3840.0 84.228485 ... 91.322872 90.649182
29 3968.0 92.442373 ... 90.522206 90.354633
30 4096.0 93.142072 ... 91.929947 92.182504
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 33.271 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 23.021 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -371,7 +371,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.119 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.011 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -194,36 +194,36 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 303.407414 98.303995 311.088617
1 1536.0 344.523365 132.604320 338.201833
0 1024.0 303.407414 98.698793 311.088617
1 1536.0 347.773587 133.083026 341.333333
2 2048.0 416.542360 157.538467 332.108094
3 2560.0 451.764698 181.238943 325.079368
4 3072.0 508.468972 190.020625 319.168834
5 3584.0 540.981122 206.769233 307.199992
6 4096.0 561.737163 219.919464 294.323343
7 4608.0 489.345125 230.880998 290.267724
8 5120.0 518.481012 242.366855 288.450695
9 5632.0 534.260858 243.545956 290.683877
10 6144.0 542.117638 249.925419 286.879370
3 2560.0 451.764698 181.238943 328.556154
4 3072.0 508.468972 190.511624 320.556515
5 3584.0 540.981122 206.769233 308.301075
6 4096.0 558.545450 219.919464 298.796351
7 4608.0 489.345125 231.364016 286.507772
8 5120.0 520.677950 242.366855 285.767451
9 5632.0 534.260858 243.545956 291.310338
10 6144.0 544.118087 249.925419 286.879370
11 6656.0 532.479975 254.775119 285.767438
12 7168.0 515.065851 252.988236 277.024148
13 7680.0 488.912481 265.590783 283.569230
14 8192.0 463.698115 257.677592 277.303250
14 8192.0 464.794337 257.677592 277.303250
15 8704.0 408.798442 266.448988 284.212242
16 9216.0 421.302872 271.391419 289.129410
17 9728.0 430.760152 278.939059 288.237038
18 10240.0 438.074849 286.100109 289.469963
19 10752.0 425.821771 245.526173 288.967529
20 11264.0 426.397479 244.426754 285.465683
21 11776.0 418.082825 248.133438 288.097854
16 9216.0 422.106891 271.391419 289.129410
17 9728.0 430.760152 279.272720 288.237038
18 10240.0 438.074849 286.433562 289.129408
19 10752.0 426.525614 245.760009 289.291486
20 11264.0 427.071098 244.426754 285.465683
21 11776.0 418.082825 248.569911 288.097854
22 12288.0 416.542386 253.578674 293.737063
23 12800.0 412.348979 252.839495 288.721817
24 13312.0 409.862733 251.466350 288.607034
23 12800.0 412.348979 253.047766 288.993430
24 13312.0 410.125805 251.367424 288.607034
25 13824.0 403.130022 256.197690 291.031592
26 14336.0 395.021816 254.862216 288.402346
27 14848.0 384.829370 256.552919 288.194100
28 15360.0 376.547496 257.430175 286.656296
29 15872.0 369.474279 260.731015 290.120338
26 14336.0 395.021816 255.051144 288.402346
27 14848.0 384.829370 256.737757 288.310684
28 15360.0 376.547496 257.430175 287.550706
29 15872.0 369.832994 260.731015 289.899545
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 13.637 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 13.777 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>12:52.685</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>12:46.783</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,23 +183,23 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:33.271</p></td>
<td><p>05:23.021</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:22.222</p></td>
<td><p>03:25.535</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:13.637</p></td>
<td><p>02:13.777</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:43.436</p></td>
<td><p>01:44.439</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.119</p></td>
<td><p>00:00.011</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>