[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2021-03-11 11:58:42 -05:00
parent 7a7ed5da3b
commit 8316c4bbb1
17 changed files with 205 additions and 164 deletions

View File

@@ -349,30 +349,34 @@ This will allow us to verify that our padding mechanism works.</p>
<h2>Benchmarking<a class="headerlink" href="#benchmarking" title="Permalink to this headline"></a></h2>
<p>Here we will benchmark our operation as a function of the number of columns in the input matrix assuming 4096 rows.
We will then compare its performance against (1) <code class="code docutils literal notranslate"><span class="pre">torch.softmax</span></code> and (2) the <code class="code docutils literal notranslate"><span class="pre">naive_softmax</span></code> defined above.</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
<span class="n">M</span> <span class="o">=</span> <span class="mi">4096</span>
<span class="n">Ns</span> <span class="o">=</span> <span class="p">[</span><span class="mi">256</span> <span class="o">*</span> <span class="n">i</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">50</span><span class="p">)]</span>
<span class="n">tri_bw</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">ref_bw</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">def_bw</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">N</span> <span class="ow">in</span> <span class="n">Ns</span><span class="p">:</span>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="nd">@triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">perf_report</span><span class="p">(</span>
<span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">Benchmark</span><span class="p">(</span>
<span class="n">x_names</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;N&#39;</span><span class="p">],</span> <span class="c1"># argument names to use as an x-axis for the plot</span>
<span class="n">x_vals</span><span class="o">=</span><span class="p">[</span><span class="mi">256</span> <span class="o">*</span> <span class="n">i</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">50</span><span class="p">)],</span> <span class="c1"># different possible values for `x_name`</span>
<span class="n">y_name</span><span class="o">=</span><span class="s1">&#39;provider&#39;</span><span class="p">,</span> <span class="c1"># argument name whose value corresponds to a different line in the plot</span>
<span class="n">y_vals</span><span class="o">=</span><span class="p">[</span><span class="s1">&#39;torch&#39;</span><span class="p">,</span> <span class="s1">&#39;triton&#39;</span><span class="p">,</span> <span class="s1">&#39;naive&#39;</span><span class="p">],</span> <span class="c1"># possible keys for `y_name`</span>
<span class="n">y_lines</span><span class="o">=</span><span class="p">[</span><span class="s2">&quot;Torch&quot;</span><span class="p">,</span> <span class="s2">&quot;Triton&quot;</span><span class="p">,</span> <span class="s1">&#39;Naive&#39;</span><span class="p">],</span> <span class="c1"># label name for the lines</span>
<span class="n">ylabel</span><span class="o">=</span><span class="s2">&quot;GB/s&quot;</span><span class="p">,</span> <span class="c1"># label name for the y-axis</span>
<span class="n">plot_name</span><span class="o">=</span><span class="s2">&quot;softmax-performance&quot;</span><span class="p">,</span> <span class="c1"># name for the plot. Used also as a file name for saving the plot.</span>
<span class="n">args</span><span class="o">=</span><span class="p">{</span><span class="s1">&#39;M&#39;</span><span class="p">:</span> <span class="mi">4096</span><span class="p">}</span> <span class="c1"># values for function arguments not in `x_names` and `y_name`</span>
<span class="p">)</span>
<span class="p">)</span>
<span class="k">def</span> <span class="nf">benchmark</span><span class="p">(</span><span class="n">M</span><span class="p">,</span> <span class="n">N</span><span class="p">,</span> <span class="n">provider</span><span class="p">):</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="n">M</span><span class="p">,</span> <span class="n">N</span><span class="p">,</span> <span class="n">device</span><span class="o">=</span><span class="s1">&#39;cuda&#39;</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">float32</span><span class="p">)</span>
<span class="n">gbps</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">ms</span><span class="p">:</span> <span class="n">x</span><span class="o">.</span><span class="n">nelement</span><span class="p">()</span> <span class="o">*</span> <span class="n">x</span><span class="o">.</span><span class="n">element_size</span><span class="p">()</span> <span class="o">*</span> <span class="mf">1e-9</span> <span class="o">/</span> <span class="p">(</span><span class="n">ms</span> <span class="o">*</span> <span class="mf">1e-3</span><span class="p">)</span>
<span class="n">do_bench</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">fn</span><span class="p">:</span> <span class="n">gbps</span><span class="p">(</span><span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">do_bench</span><span class="p">(</span><span class="n">fn</span><span class="p">,</span> <span class="n">warmup</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">rep</span><span class="o">=</span><span class="mi">100</span><span class="p">,</span> <span class="n">clear_l2</span><span class="o">=</span><span class="kc">True</span><span class="p">))</span>
<span class="n">tri_bw</span> <span class="o">+=</span> <span class="p">[</span><span class="n">do_bench</span><span class="p">(</span><span class="k">lambda</span><span class="p">:</span> <span class="n">softmax</span><span class="p">(</span><span class="n">x</span><span class="p">))]</span>
<span class="n">ref_bw</span> <span class="o">+=</span> <span class="p">[</span><span class="n">do_bench</span><span class="p">(</span><span class="k">lambda</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">softmax</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">))]</span>
<span class="n">def_bw</span> <span class="o">+=</span> <span class="p">[</span><span class="n">do_bench</span><span class="p">(</span><span class="k">lambda</span><span class="p">:</span> <span class="n">naive_softmax</span><span class="p">(</span><span class="n">x</span><span class="p">))]</span>
<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">&#39;N&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">&#39;Bandwidth (GB/s)&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">Ns</span><span class="p">,</span> <span class="n">tri_bw</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Triton&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">Ns</span><span class="p">,</span> <span class="n">ref_bw</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Torch&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">Ns</span><span class="p">,</span> <span class="n">def_bw</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">&#39;Naive&#39;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
<span class="k">if</span> <span class="n">provider</span> <span class="o">==</span> <span class="s1">&#39;torch&#39;</span><span class="p">:</span>
<span class="n">ms</span><span class="p">,</span> <span class="n">min_ms</span><span class="p">,</span> <span class="n">max_ms</span> <span class="o">=</span> <span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">do_bench</span><span class="p">(</span><span class="k">lambda</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">softmax</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">axis</span><span class="o">=-</span><span class="mi">1</span><span class="p">))</span>
<span class="k">if</span> <span class="n">provider</span> <span class="o">==</span> <span class="s1">&#39;triton&#39;</span><span class="p">:</span>
<span class="n">ms</span><span class="p">,</span> <span class="n">min_ms</span><span class="p">,</span> <span class="n">max_ms</span> <span class="o">=</span> <span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">do_bench</span><span class="p">(</span><span class="k">lambda</span><span class="p">:</span> <span class="n">softmax</span><span class="p">(</span><span class="n">x</span><span class="p">))</span>
<span class="k">if</span> <span class="n">provider</span> <span class="o">==</span> <span class="s1">&#39;naive&#39;</span><span class="p">:</span>
<span class="n">ms</span><span class="p">,</span> <span class="n">min_ms</span><span class="p">,</span> <span class="n">max_ms</span> <span class="o">=</span> <span class="n">triton</span><span class="o">.</span><span class="n">testing</span><span class="o">.</span><span class="n">do_bench</span><span class="p">(</span><span class="k">lambda</span><span class="p">:</span> <span class="n">naive_softmax</span><span class="p">(</span><span class="n">x</span><span class="p">))</span>
<span class="n">gbps</span> <span class="o">=</span> <span class="k">lambda</span> <span class="n">ms</span><span class="p">:</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">x</span><span class="o">.</span><span class="n">nelement</span><span class="p">()</span> <span class="o">*</span> <span class="n">x</span><span class="o">.</span><span class="n">element_size</span><span class="p">()</span> <span class="o">*</span> <span class="mf">1e-9</span> <span class="o">/</span> <span class="p">(</span><span class="n">ms</span> <span class="o">*</span> <span class="mf">1e-3</span><span class="p">)</span>
<span class="k">return</span> <span class="n">gbps</span><span class="p">(</span><span class="n">ms</span><span class="p">),</span> <span class="n">gbps</span><span class="p">(</span><span class="n">max_ms</span><span class="p">),</span> <span class="n">gbps</span><span class="p">(</span><span class="n">min_ms</span><span class="p">)</span>
<span class="n">benchmark</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">show_plots</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<img alt="02 fused softmax" class="sphx-glr-single-img" src="../../_images/sphx_glr_02-fused-softmax_001.png" />
<img alt="softmax-performance" class="sphx-glr-single-img" src="../../_images/sphx_glr_02-fused-softmax_001.png" />
<p>In the above plot, we can see that:</p>
<blockquote>
<div><ul class="simple">
@@ -382,7 +386,7 @@ This means that when temporary data is too large to fit entirely in the GPU
Note that our Triton kernel is not only faster than PyTorchs CUDA kernel, it is also <strong>easier to read, understand and maintain</strong>.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 33.773 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 21.653 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>