[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-08-05 00:53:59 +00:00
parent b254e2b165
commit 844e79e14c
161 changed files with 272 additions and 272 deletions

View File

@@ -322,8 +322,8 @@ for different problem sizes.</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>vector-add-performance:
size Triton Torch
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 31.999999
1 8192.0 15.999999 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 76.800002 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
@@ -339,7 +339,7 @@ for different problem sizes.</p>
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 38.029 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 46.040 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,17 +374,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 192.752942
0 256.0 512.000001 546.133347 186.181817
1 384.0 614.400016 585.142862 153.600004
2 512.0 655.360017 606.814814 154.566038
3 640.0 682.666684 640.000002 160.000000
4 768.0 722.823517 664.216187 163.839992
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 814.058574 406.179533 199.038365
94 12288.0 814.111783 415.661740 199.298541
95 12416.0 812.498981 412.577363 198.954424
96 12544.0 812.566838 412.971190 199.111113
97 12672.0 812.633240 412.097543 199.264875
93 12160.0 814.058574 406.179533 198.834951
94 12288.0 814.111783 415.661740 199.096718
95 12416.0 812.498981 412.149375 198.755369
96 12544.0 812.566838 412.971190 199.012395
97 12672.0 812.633240 412.097543 199.069228
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 18.031 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 22.897 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -568,42 +568,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.978909 ... 3.276800 2.978909
0 256.0 2.730667 ... 2.978909 2.978909
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 51.150050 ... 53.773130 52.428801
7 1152.0 45.242181 ... 47.396572 46.656000
8 1280.0 51.200001 ... 56.888887 56.888887
9 1408.0 64.138541 ... 67.305878 67.305878
10 1536.0 80.430545 ... 80.430545 79.526831
11 1664.0 62.929456 ... 62.492442 62.061463
12 1792.0 72.983276 ... 72.047592 71.588687
13 1920.0 69.120002 ... 70.530615 70.530615
7 1152.0 45.242181 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.109587
9 1408.0 64.138541 ... 67.305878 66.485074
10 1536.0 80.430545 ... 79.526831 78.643199
11 1664.0 62.929456 ... 62.061463 62.061463
12 1792.0 72.512412 ... 72.047592 71.588687
13 1920.0 69.120002 ... 70.530615 70.172588
14 2048.0 73.908442 ... 77.314362 76.959706
15 2176.0 83.500614 ... 86.367588 85.632545
15 2176.0 83.155572 ... 86.367588 85.269692
16 2304.0 68.251065 ... 76.809875 76.563695
17 2432.0 71.305746 ... 74.719317 84.877538
18 2560.0 78.019048 ... 81.310171 80.511054
19 2688.0 83.369354 ... 89.888756 89.254248
20 2816.0 81.067298 ... 83.552120 82.602666
21 2944.0 82.237674 ... 82.373605 81.967162
22 3072.0 81.121923 ... 88.335577 88.473602
23 3200.0 84.768213 ... 95.238096 94.814812
24 3328.0 83.905938 ... 84.496824 84.596116
25 3456.0 78.502012 ... 85.223646 85.858966
26 3584.0 87.169547 ... 98.483450 90.273669
27 3712.0 81.548851 ... 86.044224 86.791782
28 3840.0 84.809814 ... 92.083268 86.197974
29 3968.0 93.112506 ... 83.980685 91.198760
30 4096.0 87.495257 ... 93.336389 86.313653
17 2432.0 71.305746 ... 74.918570 84.877538
18 2560.0 77.833728 ... 81.310171 81.108913
19 2688.0 83.737433 ... 89.888756 89.044730
20 2816.0 79.879498 ... 83.074685 82.446516
21 2944.0 82.921853 ... 82.646820 83.060049
22 3072.0 81.707223 ... 87.516392 88.060814
23 3200.0 80.402009 ... 93.841640 92.219022
24 3328.0 81.530349 ... 84.895397 84.397770
25 3456.0 81.932484 ... 85.043848 88.497878
26 3584.0 86.457107 ... 98.808123 93.176571
27 3712.0 81.615477 ... 86.716441 87.399253
28 3840.0 83.027026 ... 90.909991 87.355452
29 3968.0 88.873953 ... 84.097346 90.054568
30 4096.0 92.820009 ... 88.534120 90.871857
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 16.961 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 56.082 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -371,7 +371,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.011 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.130 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -194,36 +194,36 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 311.088617 99.497980 311.088617
1 1536.0 351.085717 133.565214 341.333333
2 2048.0 423.724127 162.217818 338.979315
0 1024.0 307.200008 99.096776 307.200008
1 1536.0 351.085717 133.083026 338.201833
2 2048.0 423.724127 162.217818 334.367350
3 2560.0 461.954908 182.857144 330.322572
4 3072.0 511.999982 191.501303 316.429186
5 3584.0 554.941930 208.271186 310.527060
4 3072.0 515.580429 191.501303 320.556515
5 3584.0 551.384634 208.271186 308.301075
6 4096.0 568.231237 220.412561 297.890900
7 4608.0 498.162157 231.849059 290.267724
8 5120.0 525.128191 242.845844 287.102804
9 5632.0 538.517949 243.545956 290.683877
10 6144.0 544.118087 248.661056 286.879370
11 6656.0 527.207907 256.410903 286.793541
12 7168.0 507.469040 262.243907 288.160801
13 7680.0 482.513091 260.707203 277.590365
14 8192.0 460.440290 268.957600 286.809636
7 4608.0 498.162157 231.849059 287.251954
8 5120.0 525.128191 242.845844 283.787523
9 5632.0 538.517949 243.545956 291.310338
10 6144.0 544.118087 248.661056 286.322318
11 6656.0 527.207907 256.000009 286.279570
12 7168.0 505.976473 262.243907 288.160801
13 7680.0 482.513091 260.707203 277.172933
14 8192.0 460.440290 268.957600 286.600589
15 8704.0 416.958106 267.815384 285.377055
16 9216.0 428.651187 272.729961 289.507855
17 9728.0 438.857162 280.615388 288.950501
18 10240.0 447.650282 286.767793 290.496460
16 9216.0 428.651187 273.066667 289.507855
17 9728.0 438.857162 280.278512 288.950501
18 10240.0 447.650282 286.767793 290.153487
19 10752.0 430.079980 246.464170 290.267711
20 11264.0 429.104745 245.091565 286.069848
21 11776.0 421.198220 249.227509 288.686414
22 12288.0 420.102570 254.673582 295.207195
23 12800.0 415.696898 253.465340 288.180121
24 13312.0 412.775186 252.759501 290.179836
20 11264.0 429.104745 245.202718 285.767446
21 11776.0 421.198220 249.447482 288.686414
22 12288.0 420.102570 254.453844 295.207195
23 12800.0 415.135142 253.465340 288.180121
24 13312.0 412.242569 252.759501 290.179836
25 13824.0 405.098897 257.190689 292.571423
26 14336.0 398.222222 254.673567 286.481278
27 14848.0 384.414233 257.293872 289.246765
28 15360.0 374.253788 257.790220 288.000007
29 15872.0 366.982663 262.890274 291.006885
26 14336.0 397.761846 254.862216 286.481278
27 14848.0 383.999990 257.108233 289.246765
28 15360.0 374.634130 257.610071 288.000007
29 15872.0 366.982663 262.890274 291.229369
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 11.847 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 12.430 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>12:24.878</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>13:17.580</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,23 +183,23 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:16.961</p></td>
<td><p>05:56.082</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:18.031</p></td>
<td><p>03:22.897</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:11.847</p></td>
<td><p>02:12.430</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:38.029</p></td>
<td><p>01:46.040</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.011</p></td>
<td><p>00:00.130</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>