[PYTHON] Changed benchmarking strategy. Instead of enqueueing many

kernels before synchronizing, the kernels are now  enqueued one by one.

This makes it possible to clear the L2 cache before running the
workload, and also potentially collect some variance data for error bars
in plots
This commit is contained in:
Philippe Tillet
2021-03-06 22:02:18 -05:00
parent 92242ace2c
commit 85752037eb

View File

@@ -1,18 +1,21 @@
import torch
import os
def sparsify_tensor(x, mask, block):
ret = torch.empty((x.size(0), mask.sum(), block, block), dtype=x.dtype, device=x.device)
for idx, (h, i, j) in enumerate(zip(*mask.nonzero(as_tuple=True))):
ret[:, idx, :, :] = x[:, h, i * block:(i + 1) * block, j * block:(j + 1) * block]
return ret
def mask_tensor(x, mask, block, value=0):
ret = x.clone()
for h, i, j in zip(*(mask == 0).nonzero(as_tuple=True)):
ret[:, h, i * block:(i + 1) * block, j * block:(j + 1) * block] = value
return ret
def allclose(x, y):
assert x.dtype == y.dtype
diff = abs(x - y)
@@ -22,22 +25,37 @@ def allclose(x, y):
err = torch.max(diff) / torch.max(x_max, y_max)
return err < tol
def do_bench(fn, flops=0, warmup=10, rep=50, grad_to_none=None):
def do_bench(fn, warmup=10, rep=50, grad_to_none=None, clear_l2=False):
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
# warmup to put the clock in a stable regime
ret = fn()
for i in range(warmup):
fn()
torch.cuda.synchronize()
start_event.record()
total_ms = 0
# We maintain a buffer of 256 MB that we clear
# before each kernel call to make sure that the L2
# doesn't contain any input data before the run
cache = torch.empty(int(256e6), dtype=torch.int8, device='cuda')
for i in range(rep):
# we don't want `fn` to accumulate gradient values
# if it contains a backward pass. So we clear the
# provided gradients
if grad_to_none is not None:
grad_to_none.grad = None
# reset L2
cache.zero_()
# record time of `fn`
start_event.record()
fn()
end_event.record()
torch.cuda.synchronize()
time_ms = start_event.elapsed_time(end_event) / rep
return time_ms
end_event.record()
torch.cuda.synchronize()
total_ms += start_event.elapsed_time(end_event)
# return the average runtime of `fn`
return total_ms / rep
class Benchmark:
def __init__(self, x_names, x_vals, y_name, y_vals, y_lines, ylabel, loglog, plot_name, args):
@@ -51,6 +69,7 @@ class Benchmark:
self.plot_name = plot_name
self.args = args
class Mark:
def __init__(self, fn, benchmarks):
self.fn = fn
@@ -85,6 +104,7 @@ class Mark:
html.write(f"<image src=\"{bench.plot_name}.png\"/>\n")
html.write("</body></html>\n")
def perf_report(benchmarks):
wrapper = lambda fn: Mark(fn, benchmarks)
return wrapper