More efficient parameters
This commit is contained in:
@@ -5,7 +5,11 @@ import tools
|
|||||||
import pyviennacl as vcl
|
import pyviennacl as vcl
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import copy
|
import copy
|
||||||
|
|
||||||
from deap import algorithms
|
from deap import algorithms
|
||||||
|
from deap import base
|
||||||
|
from deap import creator
|
||||||
|
from deap import tools as deap_tools
|
||||||
|
|
||||||
from collections import OrderedDict as odict
|
from collections import OrderedDict as odict
|
||||||
|
|
||||||
@@ -39,7 +43,17 @@ class GeneticOperators(object):
|
|||||||
self.build_template = build_template
|
self.build_template = build_template
|
||||||
self.cache = {}
|
self.cache = {}
|
||||||
self.indpb = 0.1
|
self.indpb = 0.1
|
||||||
|
|
||||||
|
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
|
||||||
|
creator.create("Individual", list, fitness=creator.FitnessMin)
|
||||||
|
|
||||||
|
self.toolbox = base.Toolbox()
|
||||||
|
self.toolbox.register("population", self.init)
|
||||||
|
self.toolbox.register("evaluate", self.evaluate)
|
||||||
|
self.toolbox.register("mate", deap_tools.cxTwoPoint)
|
||||||
|
self.toolbox.register("mutate", self.mutate)
|
||||||
|
self.toolbox.register("select", deap_tools.selBest)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def decode(s):
|
def decode(s):
|
||||||
FetchingPolicy = vcl.atidlas.FetchingPolicy
|
FetchingPolicy = vcl.atidlas.FetchingPolicy
|
||||||
@@ -62,30 +76,41 @@ class GeneticOperators(object):
|
|||||||
lf0, lf1 = 0, 0
|
lf0, lf1 = 0, 0
|
||||||
return [simd, ls0, kL, ls1, mS, kS, nS, fetchA, fetchB, lf0, lf1]
|
return [simd, ls0, kL, ls1, mS, kS, nS, fetchA, fetchB, lf0, lf1]
|
||||||
|
|
||||||
def init(self):
|
def init(self, N):
|
||||||
while True:
|
result = []
|
||||||
result = [random.randint(0,2), random.randint(0,2)] + [str(random.randint(0,1)) for i in range(23)]
|
|
||||||
template = self.build_template(self.TemplateType.Parameters(*self.decode(result)))
|
|
||||||
registers_usage = template.registers_usage(vcl.atidlas.StatementsTuple(self.statement))/4
|
def generate(Afetch, Bfetch, K):
|
||||||
lmem_usage = template.lmem_usage(vcl.atidlas.StatementsTuple(self.statement))
|
result = []
|
||||||
local_size = template.parameters.local_size_0*template.parameters.local_size_1
|
while len(result) < K:
|
||||||
occupancy_record = tools.OccupancyRecord(self.device, local_size, lmem_usage, registers_usage)
|
bincode = [Afetch, Bfetch] + [str(random.randint(0,1)) for i in range(23)]
|
||||||
if not tools.skip(template, self.statement, self.device):
|
parameters = self.decode(bincode)
|
||||||
return result
|
template = self.build_template(self.TemplateType.Parameters(*parameters))
|
||||||
|
registers_usage = template.registers_usage(vcl.atidlas.StatementsTuple(self.statement))/4
|
||||||
|
lmem_usage = template.lmem_usage(vcl.atidlas.StatementsTuple(self.statement))
|
||||||
|
local_size = template.parameters.local_size_0*template.parameters.local_size_1
|
||||||
|
occupancy_record = tools.OccupancyRecord(self.device, local_size, lmem_usage, registers_usage)
|
||||||
|
if not tools.skip(template, self.statement, self.device):
|
||||||
|
result.append(creator.Individual(bincode))
|
||||||
|
return result
|
||||||
|
|
||||||
|
result += generate(0,0,N/3)
|
||||||
|
result += generate(1,1,N/3)
|
||||||
|
result += generate(2,2,N/3)
|
||||||
|
|
||||||
|
return result
|
||||||
|
|
||||||
def mutate(self, individual):
|
def mutate(self, individual):
|
||||||
while True:
|
while True:
|
||||||
new_individual = copy.deepcopy(individual)
|
new_individual = copy.deepcopy(individual)
|
||||||
for i in range(len(new_individual)):
|
for i in range(len(new_individual)):
|
||||||
if random.random() < self.indpb:
|
if i < 2 and random.random() < self.indpb:
|
||||||
if i < 2:
|
while new_individual[i] == individual[i]:
|
||||||
while new_individual[i] == individual[i]:
|
new_individual[i] = random.randint(0, 2)
|
||||||
new_individual[i] = random.randint(0, 2)
|
elif i >= 2 and random.random() < self.indpb:
|
||||||
else:
|
new_individual[i] = '1' if new_individual[i]=='0' else '0'
|
||||||
new_individual[i] = '1' if new_individual[i]=='0' else '0'
|
|
||||||
parameters = self.decode(new_individual)
|
parameters = self.decode(new_individual)
|
||||||
template = self.build_template(self.TemplateType.Parameters(*parameters))
|
template = self.build_template(self.TemplateType.Parameters(*parameters))
|
||||||
#print tools.skip(template, self.statement, self.device), parameters
|
|
||||||
if not tools.skip(template, self.statement, self.device):
|
if not tools.skip(template, self.statement, self.device):
|
||||||
break
|
break
|
||||||
return new_individual,
|
return new_individual,
|
||||||
@@ -100,44 +125,58 @@ class GeneticOperators(object):
|
|||||||
self.cache[tuple(individual)] = 10
|
self.cache[tuple(individual)] = 10
|
||||||
return self.cache[tuple(individual)],
|
return self.cache[tuple(individual)],
|
||||||
|
|
||||||
def eaMuPlusLambda(population, toolbox, mu, lambda_, cxpb, mutpb, maxtime, maxgen, halloffame, compute_perf, perf_metric):
|
def optimize(self, maxtime, maxgen, compute_perf, perf_metric):
|
||||||
# Evaluate the individuals with an invalid fitness
|
hof = deap_tools.HallOfFame(1)
|
||||||
invalid_ind = [ind for ind in population if not ind.fitness.valid]
|
# Begin the generational process
|
||||||
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
|
gen = 0
|
||||||
for ind, fit in zip(invalid_ind, fitnesses):
|
maxtime = time.strptime(maxtime, '%Mm%Ss')
|
||||||
|
maxtime = maxtime.tm_min*60 + maxtime.tm_sec
|
||||||
|
start_time = time.time()
|
||||||
|
|
||||||
|
mu = 30
|
||||||
|
_lambda = 50
|
||||||
|
cxpb = 0.4
|
||||||
|
mutpb = 0.5
|
||||||
|
|
||||||
|
population = self.init(mu)
|
||||||
|
invalid_ind = [ind for ind in population if not ind.fitness.valid]
|
||||||
|
fitnesses = self.toolbox.map(self.evaluate, invalid_ind)
|
||||||
|
for ind, fit in zip(invalid_ind, fitnesses):
|
||||||
ind.fitness.values = fit
|
ind.fitness.values = fit
|
||||||
|
hof.update(population)
|
||||||
if halloffame is not None:
|
|
||||||
halloffame.update(population)
|
while time.time() - start_time < maxtime:
|
||||||
|
# Vary the population
|
||||||
# Begin the generational process
|
offspring = []
|
||||||
gen = 0
|
for _ in xrange(_lambda):
|
||||||
maxtime = time.strptime(maxtime, '%Mm%Ss')
|
op_choice = random.random()
|
||||||
maxtime = maxtime.tm_min*60 + maxtime.tm_sec
|
if op_choice < cxpb: # Apply crossover
|
||||||
start_time = time.time()
|
ind1, ind2 = map(self.toolbox.clone, random.sample(population, 2))
|
||||||
while time.time() - start_time < maxtime and gen < maxgen:
|
ind1, ind2 = self.toolbox.mate(ind1, ind2)
|
||||||
# Vary the population
|
del ind1.fitness.values
|
||||||
offspring = algorithms.varOr(population, toolbox, lambda_, cxpb, mutpb)
|
offspring.append(ind1)
|
||||||
|
elif op_choice < cxpb + mutpb: # Apply mutation
|
||||||
|
ind = self.toolbox.clone(random.choice(population))
|
||||||
|
ind, = self.toolbox.mutate(ind)
|
||||||
|
del ind.fitness.values
|
||||||
|
offspring.append(ind)
|
||||||
|
else: # Apply reproduction
|
||||||
|
offspring.append(random.choice(population))
|
||||||
# Evaluate the individuals with an invalid fitness
|
# Evaluate the individuals with an invalid fitness
|
||||||
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
|
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
|
||||||
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
|
fitnesses = self.toolbox.map(self.evaluate, invalid_ind)
|
||||||
for ind, fit in zip(invalid_ind, fitnesses):
|
for ind, fit in zip(invalid_ind, fitnesses):
|
||||||
ind.fitness.values = fit
|
ind.fitness.values = fit
|
||||||
|
|
||||||
# Update the hall of fame with the generated individuals
|
# Update the hall of fame with the generated individuals
|
||||||
if halloffame is not None:
|
hof.update(offspring)
|
||||||
halloffame.update(offspring)
|
|
||||||
|
|
||||||
# Select the next generation population
|
# Select the next generation population
|
||||||
population[:] = toolbox.select(population + offspring, mu)
|
population[:] = self.toolbox.select(population + offspring, mu)
|
||||||
|
|
||||||
# Update the statistics with the new population
|
|
||||||
gen = gen + 1
|
gen = gen + 1
|
||||||
|
best_profile = '(%s)'%','.join(map(str,GeneticOperators.decode(hof[0])));
|
||||||
best_profile = '(%s)'%','.join(map(str,GeneticOperators.decode(halloffame[0])));
|
best_performance = compute_perf(hof[0].fitness.values[0])
|
||||||
best_performance = compute_perf(halloffame[0].fitness.values[0])
|
|
||||||
sys.stdout.write('Generation %d | Time %d | Best %d %s [ for %s ]\n'%(gen, time.time() - start_time, best_performance, perf_metric, best_profile))
|
sys.stdout.write('Generation %d | Time %d | Best %d %s [ for %s ]\n'%(gen, time.time() - start_time, best_performance, perf_metric, best_profile))
|
||||||
sys.stdout.flush()
|
sys.stdout.flush()
|
||||||
sys.stdout.write('\n')
|
sys.stdout.write('\n')
|
||||||
return population
|
return population
|
||||||
|
|
||||||
|
|
||||||
|
@@ -7,10 +7,7 @@ import itertools
|
|||||||
import tools
|
import tools
|
||||||
import deap.tools
|
import deap.tools
|
||||||
|
|
||||||
from deap import base
|
|
||||||
from deap import creator
|
|
||||||
from genetic import GeneticOperators
|
from genetic import GeneticOperators
|
||||||
from genetic import eaMuPlusLambda
|
|
||||||
|
|
||||||
def exhaustive(statement, context, TemplateType, build_template, parameter_names, all_parameters, compute_perf, perf_metric, out):
|
def exhaustive(statement, context, TemplateType, build_template, parameter_names, all_parameters, compute_perf, perf_metric, out):
|
||||||
device = context.devices[0]
|
device = context.devices[0]
|
||||||
@@ -39,25 +36,4 @@ def exhaustive(statement, context, TemplateType, build_template, parameter_names
|
|||||||
|
|
||||||
def genetic(statement, context, TemplateType, build_template, parameter_names, all_parameters, compute_perf, perf_metric, out):
|
def genetic(statement, context, TemplateType, build_template, parameter_names, all_parameters, compute_perf, perf_metric, out):
|
||||||
GA = GeneticOperators(context.devices[0], statement, all_parameters, parameter_names, TemplateType, build_template)
|
GA = GeneticOperators(context.devices[0], statement, all_parameters, parameter_names, TemplateType, build_template)
|
||||||
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
|
GA.optimize(maxtime='5m0s', maxgen=1000, compute_perf=compute_perf, perf_metric=perf_metric)
|
||||||
creator.create("Individual", list, fitness=creator.FitnessMin)
|
|
||||||
|
|
||||||
toolbox = base.Toolbox()
|
|
||||||
toolbox.register("individual", deap.tools.initIterate, creator.Individual, GA.init)
|
|
||||||
toolbox.register("population", deap.tools.initRepeat, list, toolbox.individual)
|
|
||||||
toolbox.register("evaluate", GA.evaluate)
|
|
||||||
toolbox.register("mate", deap.tools.cxTwoPoint)
|
|
||||||
toolbox.register("mutate", GA.mutate)
|
|
||||||
toolbox.register("select", deap.tools.selBest)
|
|
||||||
|
|
||||||
pop = toolbox.population(n=50)
|
|
||||||
hof = deap.tools.HallOfFame(1)
|
|
||||||
|
|
||||||
best_performer = lambda x: max([compute_perf(hof[0].fitness.values[0]) for t in x])
|
|
||||||
best_profile = lambda x: '(%s)'%','.join(map(str,hof[0]))
|
|
||||||
|
|
||||||
stats = deap.tools.Statistics(lambda ind: ind.fitness.values)
|
|
||||||
stats.register("max (" + perf_metric + ")", lambda x: max([compute_perf(hof[0].fitness.values[0]) for t in x]))
|
|
||||||
stats.register("profile ", lambda x: '(%s)'%','.join(map(str,hof[0])))
|
|
||||||
|
|
||||||
pop = eaMuPlusLambda(pop, toolbox, 50, 70, cxpb=0.2, mutpb=0.3, maxtime='5m0s', maxgen=1000, halloffame=hof, compute_perf=compute_perf, perf_metric=perf_metric)
|
|
||||||
|
Reference in New Issue
Block a user