[STYLE] run autopep8 and isort (#421)

Run:
```
isort ./python
autopep8 -i --ignore E501,E701,E731 $(find ./python/ -name '*.py')
```
with an `.isort.cfg` and then clean up a few warts. This PR should be a no-op; the idea is that this is all boring whitespace changes, and any config file changes will be in a different change to make it easier to review.
This commit is contained in:
Madeleine Thompson
2022-01-06 14:34:17 -08:00
committed by GitHub
parent 120cda015e
commit 8bf551ae7a
30 changed files with 742 additions and 623 deletions

View File

@@ -112,13 +112,13 @@ You will specifically learn about:
# # number of programs ids along the N axis
# num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
# # number of programs in group
# num_pid_in_group = GROUP_SIZE_M * num_pid_n
# num_pid_in_group = GROUP_SIZE_M * num_pid_n
# # id of the group this program is in
# group_id = pid // num_pid_in_group
# group_id = pid // num_pid_in_group
# # row-id of the first program in the group
# first_pid_m = group_id * GROUP_SIZE_M
# first_pid_m = group_id * GROUP_SIZE_M
# # if `num_pid_m` isn't divisible by `GROUP_SIZE_M`, the last group is smaller
# group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
# group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
# # *within groups*, programs are ordered in a column-major order
# # row-id of the program in the *launch grid*
# pid_m = first_pid_m + (pid % group_size_m)
@@ -141,6 +141,7 @@ You will specifically learn about:
#
import torch
import triton
import triton.language as tl
@@ -152,18 +153,19 @@ import triton.language as tl
# - An autotuning *key* whose change in values will trigger evaluation of all the
# provided configs
@triton.autotune(
configs=[
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8),
triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8),
triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64 , 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64 , 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64 , 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32 , 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64 , 'BLOCK_SIZE_N': 32 , 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2),
triton.Config({'BLOCK_SIZE_M': 32 , 'BLOCK_SIZE_N': 64 , 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4),
triton.Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2),
triton.Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2),
],
key=['M', 'N', 'K'],
)
@@ -185,7 +187,7 @@ def matmul_kernel(
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
GROUP_SIZE_M: tl.constexpr,
ACTIVATION: tl.constexpr,
):
):
"""Kernel for computing the matmul C = A x B.
A has shape (M, K), B has shape (K, N) and C has shape (M, N)
"""
@@ -196,16 +198,16 @@ def matmul_kernel(
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + (pid % group_size_m)
pid_n = (pid % num_pid_in_group) // group_size_m
# ----------------------------------------------------------
# Create pointers for the first blocks of A and B.
# We will advance this pointer as we move in the K direction
# We will advance this pointer as we move in the K direction
# and accumulate
# a_ptrs is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers
# b_ptrs is a block of [BLOCK_SIZE_K, BLOCK_SIZE_n] pointers
@@ -213,8 +215,8 @@ def matmul_kernel(
offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = a_ptr + (offs_am[:, None]*stride_am + offs_k [None, :]*stride_ak)
b_ptrs = b_ptr + (offs_k [:, None]*stride_bk + offs_bn[None, :]*stride_bn)
a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak)
b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn)
# -----------------------------------------------------------
# Iterate to compute a block of the C matrix
@@ -223,8 +225,8 @@ def matmul_kernel(
# `accumulator` will be converted back to fp16 after the loop
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, K, BLOCK_SIZE_K):
# Note that for simplicity, we don't apply a mask here.
# This means that if K is not a multiple of BLOCK_SIZE_K,
# Note that for simplicity, we don't apply a mask here.
# This means that if K is not a multiple of BLOCK_SIZE_K,
# this will access out-of-bounds memory and produce an
# error or (worse!) incorrect results.
a = tl.load(a_ptrs)
@@ -236,7 +238,7 @@ def matmul_kernel(
b_ptrs += BLOCK_SIZE_K * stride_bk
# you can fuse arbitrary activation functions here
# while the accumulator is still in FP32 !
if meta['ACTIVATION']:
if meta['ACTIVATION']:
accumulator = meta['ACTIVATION'](accumulator)
c = accumulator.to(tl.float16)