[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-04-20 00:43:07 +00:00
parent 245e5ab128
commit 8d0e47d73e
156 changed files with 282 additions and 282 deletions

View File

@@ -339,7 +339,7 @@ for different problem sizes.</p>
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 43.477 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 40.524 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,16 +374,16 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 190.511628
0 256.0 512.000001 512.000001 188.321838
1 384.0 585.142862 585.142862 151.703707
2 512.0 655.360017 585.142849 156.038096
3 640.0 682.666684 640.000002 158.759699
4 768.0 722.823517 646.736871 162.754967
2 512.0 655.360017 606.814814 154.566038
3 640.0 682.666684 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 812.359066 405.755985 198.834951
94 12288.0 814.111783 415.661740 199.096718
95 12416.0 812.498981 412.149375 198.755369
96 12544.0 812.566838 412.971190 199.012395
93 12160.0 812.359066 406.179533 199.038365
94 12288.0 814.111783 415.661740 199.197579
95 12416.0 812.498981 411.722274 198.904612
96 12544.0 812.566838 412.546756 199.012395
97 12672.0 812.633240 412.097543 199.167004
[98 rows x 4 columns]
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 24.818 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 22.390 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -568,42 +568,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 2.978909 2.978909
1 384.0 7.372800 ... 7.899428 7.899428
0 256.0 2.730667 ... 3.276800 2.978909
1 384.0 7.372800 ... 8.507077 7.899428
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 37.971025 ... 39.025776 37.971025
4 768.0 31.597714 ... 34.028308 34.028308
5 896.0 37.971025 ... 39.025776 39.025776
6 1024.0 49.932191 ... 52.428801 52.428801
7 1152.0 44.566925 ... 46.656000 46.656000
7 1152.0 45.242181 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.888887
9 1408.0 64.138541 ... 67.305878 67.305878
10 1536.0 80.430545 ... 79.526831 79.526831
11 1664.0 63.372618 ... 62.492442 62.061463
12 1792.0 72.983276 ... 72.047592 71.588687
13 1920.0 68.776119 ... 70.172588 70.172588
12 1792.0 72.983276 ... 71.588687 71.588687
13 1920.0 69.120002 ... 70.172588 70.172588
14 2048.0 73.908442 ... 76.959706 76.608294
15 2176.0 83.155572 ... 85.998493 85.269692
16 2304.0 68.251065 ... 76.563695 76.563695
17 2432.0 71.125224 ... 85.134737 83.366361
18 2560.0 77.649287 ... 80.709358 80.313727
19 2688.0 83.186525 ... 89.676257 89.044730
20 2816.0 84.035084 ... 83.233226 83.233226
21 2944.0 80.380696 ... 83.060049 82.921853
22 3072.0 82.420822 ... 87.516392 89.100084
23 3200.0 79.601989 ... 93.841640 91.168092
24 3328.0 82.275764 ... 84.795401 84.496824
25 3456.0 81.683457 ... 91.200871 90.994998
26 3584.0 84.905939 ... 91.470385 94.448944
27 3712.0 85.675250 ... 88.404730 87.706180
28 3840.0 81.019778 ... 87.217666 91.549669
29 3968.0 86.053553 ... 91.816356 83.807647
30 4096.0 94.386588 ... 86.424811 85.217605
16 2304.0 68.251065 ... 76.319081 76.563695
17 2432.0 71.305746 ... 74.918570 83.864074
18 2560.0 77.833728 ... 81.310171 80.908642
19 2688.0 83.186525 ... 90.102270 89.254248
20 2816.0 82.135981 ... 83.074685 83.392363
21 2944.0 80.902653 ... 82.646820 82.509987
22 3072.0 81.589488 ... 87.787755 86.447489
23 3200.0 80.604535 ... 95.952022 94.814812
24 3328.0 82.939284 ... 82.181847 81.901361
25 3456.0 81.518272 ... 86.596744 90.180725
26 3584.0 87.211821 ... 98.375705 96.579370
27 3712.0 82.491612 ... 88.679403 81.153437
28 3840.0 84.744825 ... 92.313853 84.355978
29 3968.0 92.723355 ... 85.271796 88.744681
30 4096.0 89.090569 ... 92.884244 86.202781
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 35.509 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 17.895 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -371,7 +371,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.011 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.010 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -194,36 +194,36 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 307.200008 99.497980 311.088617
1 1536.0 347.773587 134.050910 344.523365
2 2048.0 423.724127 159.067963 334.367350
3 2560.0 458.507457 182.314537 330.322572
4 3072.0 519.211251 191.501303 321.956335
5 3584.0 551.384634 207.768111 308.301075
6 4096.0 564.965515 220.907859 299.707322
7 4608.0 498.162157 232.336141 287.251954
8 5120.0 527.381977 243.326731 286.433562
9 5632.0 540.671974 244.426754 291.310338
10 6144.0 550.208948 251.202731 286.879370
11 6656.0 534.260858 255.590406 286.793541
12 7168.0 516.612607 253.734520 277.919225
13 7680.0 488.912481 266.743841 284.884090
14 8192.0 463.698115 258.354805 278.087683
15 8704.0 416.127506 267.815384 285.377055
16 9216.0 429.483477 272.394084 290.267724
17 9728.0 437.213490 279.942444 288.950501
18 10240.0 446.836366 287.438599 290.496460
19 10752.0 430.079980 246.935876 289.941565
20 11264.0 430.471331 245.536784 286.069848
21 11776.0 421.198220 249.447482 288.686414
22 12288.0 418.314886 254.453844 294.617366
23 12800.0 414.016170 254.094291 288.450715
24 13312.0 412.242569 252.360194 289.129403
25 13824.0 404.604870 256.991469 291.799461
26 14336.0 395.930964 255.904799 289.129416
27 14848.0 386.498925 257.479779 289.012175
28 15360.0 376.547496 258.332158 287.775181
29 15872.0 369.116300 261.806182 290.784741
0 1024.0 307.200008 99.497980 315.076934
1 1536.0 347.773587 133.083026 338.201833
2 2048.0 423.724127 161.684218 325.509933
3 2560.0 458.507457 182.314537 325.079368
4 3072.0 515.580429 190.511624 316.429186
5 3584.0 551.384634 208.271186 310.527060
6 4096.0 568.231237 220.907859 299.707322
7 4608.0 498.162157 231.364016 286.507772
8 5120.0 527.381977 242.366855 284.444444
9 5632.0 540.671974 242.671458 288.820505
10 6144.0 540.131844 249.925419 285.767458
11 6656.0 528.953642 256.000009 285.257135
12 7168.0 508.970395 255.240352 277.470965
13 7680.0 485.052616 266.358392 283.569230
14 8192.0 461.521112 260.753323 276.134828
15 8704.0 416.958106 265.433292 282.291896
16 9216.0 427.822068 269.736580 286.693456
17 9728.0 438.857162 282.996365 291.112221
18 10240.0 445.217381 286.433562 290.496460
19 10752.0 423.724151 245.760009 290.267711
20 11264.0 428.424741 243.765566 284.864065
21 11776.0 424.360356 249.667843 288.981596
22 12288.0 420.701865 253.578674 294.617366
23 12800.0 416.260178 254.304635 290.909089
24 13312.0 412.775186 253.360814 291.237929
25 13824.0 405.098897 257.990666 292.571423
26 14336.0 400.540153 252.802351 287.438588
27 14848.0 383.586664 260.110958 292.811844
28 15360.0 378.869469 261.076480 290.267715
29 15872.0 369.116300 261.267482 289.239176
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 12.572 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 12.224 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>12:56.386</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>12:33.042</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,23 +183,23 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:35.509</p></td>
<td><p>05:17.895</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:24.818</p></td>
<td><p>03:22.390</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:12.572</p></td>
<td><p>02:12.224</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:43.477</p></td>
<td><p>01:40.524</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.011</p></td>
<td><p>00:00.010</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>