[FRONTEND][BACKEND] Added trans instruction; made flash attention bwd pass work (#943)

This commit is contained in:
Philippe Tillet
2022-12-03 09:58:24 -08:00
committed by GitHub
parent 4d64589b22
commit 8edfe813a5
12 changed files with 310 additions and 143 deletions

View File

@@ -295,6 +295,18 @@ def TT_CatOp : TT_Op<"cat", [NoSideEffect,
let assemblyFormat = "$lhs `,` $rhs attr-dict `:` functional-type(operands, results)";
}
def TT_TransOp : TT_Op<"trans", [NoSideEffect,
SameOperandsAndResultElementType]> {
let summary = "transpose a tensor";
let arguments = (ins TT_Tensor:$src);
let results = (outs TT_Tensor:$result);
let assemblyFormat = "$src attr-dict `:` functional-type(operands, results)";
}
//
// SPMD Ops
//

View File

@@ -26,7 +26,7 @@ ChangeResult SharedMemoryAliasAnalysis::visitOperation(
// These ops may allocate a new shared memory buffer.
auto result = op->getResult(0);
// FIXME(Keren): extract and insert are always alias for now
if (isa<tensor::ExtractSliceOp>(op)) {
if (isa<tensor::ExtractSliceOp, triton::TransOp>(op)) {
// extract_slice %src
aliasInfo = AliasInfo(operands[0]->getValue());
pessimistic = false;

View File

@@ -105,7 +105,7 @@ bool maybeSharedAllocationOp(Operation *op) {
}
bool maybeAliasOp(Operation *op) {
return isa<tensor::ExtractSliceOp>(op) ||
return isa<tensor::ExtractSliceOp>(op) || isa<triton::TransOp>(op) ||
isa<triton::gpu::InsertSliceAsyncOp>(op) ||
isa<tensor::InsertSliceOp>(op);
}

View File

@@ -2716,6 +2716,9 @@ public:
auto dstSharedLayout = dstTy.getEncoding().cast<SharedEncodingAttr>();
auto inOrd = srcBlockedLayout.getOrder();
auto outOrd = dstSharedLayout.getOrder();
if (inOrd != outOrd)
llvm_unreachable(
"blocked -> shared with different order not yet implemented");
unsigned inVec =
inOrd == outOrd ? srcBlockedLayout.getSizePerThread()[inOrd[0]] : 1;
unsigned outVec = dstSharedLayout.getVec();
@@ -2775,7 +2778,8 @@ public:
getMultiDimIndex<unsigned>(linearRepIdx, reps, inOrd);
for (unsigned linearWordIdx = 0; linearWordIdx < numWordsEachRep;
++linearWordIdx) {
// step 1: recover the multidim_index from the index of input_elements
// step 1: recover the multidim_index from the index of
// input_elements
auto multiDimWordIdx =
getMultiDimIndex<unsigned>(linearWordIdx, wordsInEachRep, inOrd);
SmallVector<Value> multiDimIdx(2);
@@ -3711,6 +3715,33 @@ DotOpConversion::convertFMADot(triton::DotOp op, OpAdaptor adaptor,
/// ====================== mma codegen end ============================
/// ====================== trans codegen begin ============================
struct TransOpConversion
: public ConvertTritonGPUOpToLLVMPattern<triton::TransOp> {
using ConvertTritonGPUOpToLLVMPattern<
triton::TransOp>::ConvertTritonGPUOpToLLVMPattern;
LogicalResult
matchAndRewrite(triton::TransOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
auto srcSmemObj =
getSharedMemoryObjectFromStruct(loc, adaptor.src(), rewriter);
SmallVector<Value> dstStrides = {srcSmemObj.strides[1],
srcSmemObj.strides[0]};
SmallVector<Value> dstOffsets = {srcSmemObj.offsets[1],
srcSmemObj.offsets[0]};
auto dstSmemObj =
SharedMemoryObject(srcSmemObj.base, dstStrides, dstOffsets);
auto retVal = getStructFromSharedMemoryObject(loc, dstSmemObj, rewriter);
rewriter.replaceOp(op, retVal);
return success();
}
};
/// ====================== trans codegen end ============================
Value convertSplatLikeOpWithMmaLayout(const MmaEncodingAttr &layout,
Type resType, Type elemType,
Value constVal,
@@ -4538,6 +4569,7 @@ void populateTritonToLLVMPatterns(mlir::LLVMTypeConverter &typeConverter,
patterns.add<ViewLikeOpConversion<triton::ExpandDimsOp>>(typeConverter,
benefit);
patterns.add<DotOpConversion>(typeConverter, allocation, smem, benefit);
patterns.add<TransOpConversion>(typeConverter, benefit);
patterns.add<PrintfOpConversion>(typeConverter, benefit);
}

View File

@@ -252,6 +252,51 @@ struct TritonDotPattern : public OpConversionPattern<triton::DotOp> {
}
};
struct TritonTransPattern : public OpConversionPattern<triton::TransOp> {
using OpConversionPattern<triton::TransOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(triton::TransOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Value src = adaptor.src();
auto srcType = src.getType().cast<RankedTensorType>();
Attribute srcEncoding = srcType.getEncoding();
if (!srcEncoding)
return failure();
if (!srcEncoding.isa<triton::gpu::SharedEncodingAttr>()) {
// TODO: end-to-end correctness is broken if
// the input is blocked and the output is shared
// with different order. Maybe a backend issue in BlockedToShared?
SmallVector<unsigned> order = {1, 0};
if (auto srcBlockedEncoding =
srcEncoding.dyn_cast<triton::gpu::BlockedEncodingAttr>())
llvm::copy(srcBlockedEncoding.getOrder(), order.begin());
srcEncoding =
triton::gpu::SharedEncodingAttr::get(getContext(), 1, 1, 1, order);
srcType = RankedTensorType::get(srcType.getShape(),
srcType.getElementType(), srcEncoding);
src = rewriter.create<triton::gpu::ConvertLayoutOp>(src.getLoc(), srcType,
src);
}
auto srcSharedEncoding =
srcEncoding.cast<triton::gpu::SharedEncodingAttr>();
SmallVector<unsigned> retOrder(srcSharedEncoding.getOrder().begin(),
srcSharedEncoding.getOrder().end());
SmallVector<int64_t> retShapes(srcType.getShape().begin(),
srcType.getShape().end());
std::reverse(retOrder.begin(), retOrder.end());
std::reverse(retShapes.begin(), retShapes.end());
auto retEncoding =
triton::gpu::SharedEncodingAttr::get(getContext(), 1, 1, 1, retOrder);
auto retType =
RankedTensorType::get(retShapes, srcType.getElementType(), retEncoding);
rewriter.replaceOpWithNewOp<triton::TransOp>(op, retType, src);
return success();
}
};
struct TritonLoadPattern : public OpConversionPattern<triton::LoadOp> {
using OpConversionPattern<triton::LoadOp>::OpConversionPattern;
@@ -390,9 +435,10 @@ void populateTritonPatterns(TritonGPUTypeConverter &typeConverter,
TritonGenericPattern<triton::PtrToIntOp>,
TritonGenericPattern<triton::SplatOp>, TritonBroadcastPattern,
TritonGenericPattern<triton::AddPtrOp>, TritonReducePattern,
TritonExpandDimsPattern, TritonMakeRangePattern, TritonDotPattern,
TritonLoadPattern, TritonStorePattern, TritonExtElemwisePattern,
TritonPrintfPattern, TritonAtomicRMWPattern>(typeConverter, context);
TritonTransPattern, TritonExpandDimsPattern, TritonMakeRangePattern,
TritonDotPattern, TritonLoadPattern, TritonStorePattern,
TritonExtElemwisePattern, TritonPrintfPattern, TritonAtomicRMWPattern>(
typeConverter, context);
}
//

View File

@@ -178,6 +178,10 @@ public:
!isSharedEncoding(convert.getResult())) {
return mlir::failure();
}
if (isSharedEncoding(convert.getOperand()) &&
isSharedEncoding(convert.getResult())) {
return mlir::failure();
}
auto srcType = convert.getOperand().getType().cast<RankedTensorType>();
auto srcShared =
srcType.getEncoding().dyn_cast<triton::gpu::SharedEncodingAttr>();
@@ -661,6 +665,54 @@ SmallVector<unsigned, 2> warpsPerTileV2(triton::DotOp dotOp,
} // namespace
class OptimizeBlockedToShared : public mlir::RewritePattern {
public:
OptimizeBlockedToShared(mlir::MLIRContext *context)
: RewritePattern(triton::gpu::ConvertLayoutOp::getOperationName(), 1,
context) {}
mlir::LogicalResult
matchAndRewrite(mlir::Operation *op,
mlir::PatternRewriter &rewriter) const override {
auto cvt = cast<triton::gpu::ConvertLayoutOp>(op);
auto srcType = cvt.getOperand().getType().cast<RankedTensorType>();
auto dstType = cvt.getResult().getType().cast<RankedTensorType>();
auto srcBlockedLayout =
srcType.getEncoding().dyn_cast<triton::gpu::BlockedEncodingAttr>();
auto dstSharedLayout =
dstType.getEncoding().dyn_cast<triton::gpu::SharedEncodingAttr>();
if (!srcBlockedLayout || !dstSharedLayout)
return failure();
if (srcBlockedLayout.getOrder() == dstSharedLayout.getOrder())
return failure();
// For now only works if single use is transpose
// TODO: rematerialize #shared uses
auto users = op->getUsers();
if (std::distance(users.begin(), users.end()) != 1 ||
!isa<triton::TransOp>(*users.begin()))
return failure();
auto tmpShared = triton::gpu::SharedEncodingAttr::get(
op->getContext(), dstSharedLayout.getVec(),
dstSharedLayout.getPerPhase(), dstSharedLayout.getMaxPhase(),
srcBlockedLayout.getOrder());
auto tmpType = RankedTensorType::get(srcType.getShape(),
srcType.getElementType(), tmpShared);
auto tmpCvt = rewriter.create<triton::gpu::ConvertLayoutOp>(
op->getLoc(), tmpType, cvt.getOperand());
auto newDstType = RankedTensorType::get(
users.begin()->getResultTypes()[0].cast<RankedTensorType>().getShape(),
srcType.getElementType(), dstSharedLayout);
auto newTrans = rewriter.create<triton::TransOp>(op->getLoc(), newDstType,
tmpCvt.getResult());
rewriter.replaceOp(*users.begin(), newTrans.getResult());
return success();
}
};
class BlockedToMMA : public mlir::RewritePattern {
int computeCapability;
@@ -755,6 +807,7 @@ public:
mlir::RewritePatternSet patterns(context);
patterns.add<OptimizeBlockedToShared>(context);
patterns.add<SimplifyConversion>(context);
patterns.add<DecomposeDotOperand>(context);
patterns.add<RematerializeBackward>(context);

View File

@@ -1085,6 +1085,16 @@ void init_triton_ir(py::module &&m) {
mlir::RankedTensorType::get(shape, lhsType.getElementType()),
lhs, rhs);
})
.def("create_trans",
[](mlir::OpBuilder &self, mlir::Value &arg) -> mlir::Value {
auto loc = self.getUnknownLoc();
auto argType = arg.getType().dyn_cast<mlir::RankedTensorType>();
auto argEltType = argType.getElementType();
std::vector<int64_t> retShape = argType.getShape();
std::reverse(retShape.begin(), retShape.end());
return self.create<mlir::triton::TransOp>(
loc, mlir::RankedTensorType::get(retShape, argEltType), arg);
})
.def("create_broadcast",
[](mlir::OpBuilder &self, mlir::Value &arg,
std::vector<int64_t> &shape) -> mlir::Value {

View File

@@ -667,7 +667,6 @@ def test_tensor_atomic_rmw(shape, axis, device="cuda"):
tl.atomic_add(Z + off1, z)
rs = RandomState(17)
x = numpy_random((shape0, shape1), dtype_str="float32", rs=rs)
print(x)
# reference result
z_ref = np.sum(x, axis=axis, keepdims=False)
# triton result
@@ -1067,122 +1066,126 @@ def test_permute(dtype_str, shape, perm, device='cuda'):
# # ---------------
# @pytest.mark.parametrize("epilogue, allow_tf32, dtype",
# [(epilogue, allow_tf32, dtype)
# for epilogue in ['none', 'trans', 'add-matrix', 'add-rows', 'add-cols', 'softmax', 'chain-dot']
# for allow_tf32 in [True, False]
# for dtype in ['float16']
# if not (allow_tf32 and (dtype in ['float16']))])
# def test_dot(epilogue, allow_tf32, dtype, device='cuda'):
# cc = _triton.runtime.cc(_triton.runtime.backend.CUDA, torch.cuda.current_device())
# if cc < 80:
# if dtype == 'int8':
# pytest.skip("Only test int8 on devices with sm >= 80")
# elif dtype == 'float32' and allow_tf32:
# pytest.skip("Only test tf32 on devices with sm >= 80")
@pytest.mark.parametrize("epilogue, allow_tf32, dtype",
[(epilogue, allow_tf32, dtype)
for epilogue in ['none', 'trans', 'add-matrix', 'add-rows', 'add-cols', 'softmax', 'chain-dot']
for allow_tf32 in [True, False]
for dtype in ['float16']
if not (allow_tf32 and (dtype in ['float16']))])
def test_dot(epilogue, allow_tf32, dtype, device='cuda'):
capability = torch.cuda.get_device_capability()
if capability[0] < 80:
if dtype == 'int8':
pytest.skip("Only test int8 on devices with sm >= 80")
elif dtype == 'float32' and allow_tf32:
pytest.skip("Only test tf32 on devices with sm >= 80")
# M, N, K = 128, 128, 64
# num_warps = 8
# trans_a, trans_b = False, False
M, N, K = 64, 64, 64
num_warps = 4
trans_a, trans_b = False, False
# # triton kernel
# @triton.jit
# def kernel(X, stride_xm, stride_xk,
# Y, stride_yk, stride_yn,
# W, stride_wn, stride_wl,
# Z, stride_zm, stride_zn,
# BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr,
# ADD_MATRIX: tl.constexpr, ADD_ROWS: tl.constexpr, ADD_COLS: tl.constexpr,
# ALLOW_TF32: tl.constexpr,
# DO_SOFTMAX: tl.constexpr, CHAIN_DOT: tl.constexpr,
# TRANS_A: tl.constexpr, TRANS_B: tl.constexpr):
# off_m = tl.arange(0, BLOCK_M)
# off_n = tl.arange(0, BLOCK_N)
# off_l = tl.arange(0, BLOCK_N)
# off_k = tl.arange(0, BLOCK_K)
# Xs = X + off_m[:, None] * stride_xm + off_k[None, :] * stride_xk
# Ys = Y + off_k[:, None] * stride_yk + off_n[None, :] * stride_yn
# Ws = W + off_n[:, None] * stride_wn + off_l[None, :] * stride_wl
# Zs = Z + off_m[:, None] * stride_zm + off_n[None, :] * stride_zn
# z = tl.dot(tl.load(Xs), tl.load(Ys), trans_a=TRANS_A, trans_b=TRANS_B, allow_tf32=ALLOW_TF32)
# if ADD_MATRIX:
# z += tl.load(Zs)
# if ADD_ROWS:
# ZRs = Z + off_m * stride_zm
# z += tl.load(ZRs)[:, None]
# if ADD_COLS:
# ZCs = Z + off_n * stride_zn
# z += tl.load(ZCs)[None, :]
# if DO_SOFTMAX:
# max = tl.max(z, 1)
# z = z - max[:, None]
# num = tl.exp(z)
# den = tl.sum(num, 1)
# z = num / den[:, None]
# if CHAIN_DOT:
# # tl.store(Zs, z)
# # tl.debug_barrier()
# z = tl.dot(z.to(tl.float16), tl.load(Ws), trans_a=TRANS_A)
# tl.store(Zs, z)
# # input
# rs = RandomState(17)
# x = numpy_random((K, M) if trans_a else (M, K), dtype_str=dtype, rs=rs) * .1
# y = numpy_random((N, K) if trans_b else (K, N), dtype_str=dtype, rs=rs) * .1
# w = numpy_random((N, N), dtype_str=dtype, rs=rs) * .1
# if allow_tf32:
# x = (x.view('uint32') & np.uint32(0xffffe000)).view('float32')
# y = (y.view('uint32') & np.uint32(0xffffe000)).view('float32')
# w = (w.view('uint32') & np.uint32(0xffffe000)).view('float32')
# x_tri = to_triton(x, device=device)
# y_tri = to_triton(y, device=device)
# w_tri = to_triton(w, device=device)
# # triton result
# z = 1 + numpy_random((M, N), dtype_str=dtype, rs=rs) * .1
# z_tri = to_triton(z, device=device)
# if epilogue == 'trans':
# z_tri = torch.as_strided(z_tri, (M, N), z_tri.stride()[::-1])
# pgm = kernel[(1, 1)](x_tri, x_tri.stride(0), x_tri.stride(1),
# y_tri, y_tri.stride(0), y_tri.stride(1),
# w_tri, w_tri.stride(0), w_tri.stride(1),
# z_tri, z_tri.stride(0), z_tri.stride(1),
# TRANS_A=trans_a, TRANS_B=trans_b,
# BLOCK_M=M, BLOCK_K=K, BLOCK_N=N,
# ADD_MATRIX=epilogue == 'add-matrix',
# ADD_ROWS=epilogue == 'add-rows',
# ADD_COLS=epilogue == 'add-cols',
# DO_SOFTMAX=epilogue == 'softmax',
# CHAIN_DOT=epilogue == 'chain-dot',
# ALLOW_TF32=allow_tf32,
# num_warps=num_warps)
# # torch result
# x_ref = x.T if trans_a else x
# y_ref = y.T if trans_b else y
# z_ref = np.matmul(x_ref, y_ref)
# if epilogue == 'add-matrix':
# z_ref += z
# if epilogue == 'add-rows':
# z_ref += z[:, 0][:, None]
# if epilogue == 'add-cols':
# z_ref += z[0, :][None, :]
# if epilogue == 'softmax':
# num = np.exp(z_ref - np.max(z_ref, axis=-1, keepdims=True))
# denom = np.sum(num, axis=-1, keepdims=True)
# z_ref = num / denom
# if epilogue == 'chain-dot':
# z_ref = np.matmul(z_ref.T if trans_a else z_ref, w)
# # compare
# # print(z_ref[:,0], z_tri[:,0])
# np.testing.assert_allclose(z_ref, to_numpy(z_tri), rtol=0.01)
# # make sure ld/st are vectorized
# ptx = pgm.asm['ptx']
# assert 'ld.global.v4' in ptx
# assert 'st.global.v4' in ptx
# if allow_tf32:
# assert 'mma.sync.aligned.m16n8k8.row.col.f32.tf32.tf32.f32' in ptx
# elif dtype == 'float32':
# assert 'mma.sync.aligned.m16n8k8.row.col.f32.tf32.tf32.f32' not in ptx
# elif dtype == 'int8':
# assert 'mma.sync.aligned.m16n8k32.row.col.satfinite.s32.s8.s8.s32' in ptx
# triton kernel
@triton.jit
def kernel(X, stride_xm, stride_xk,
Y, stride_yk, stride_yn,
W, stride_wn, stride_wl,
Z, stride_zm, stride_zn,
BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr,
ADD_MATRIX: tl.constexpr, ADD_ROWS: tl.constexpr, ADD_COLS: tl.constexpr,
ALLOW_TF32: tl.constexpr,
DO_SOFTMAX: tl.constexpr, CHAIN_DOT: tl.constexpr,
TRANS_A: tl.constexpr, TRANS_B: tl.constexpr):
off_m = tl.arange(0, BLOCK_M)
off_n = tl.arange(0, BLOCK_N)
off_l = tl.arange(0, BLOCK_N)
off_k = tl.arange(0, BLOCK_K)
Xs = X + off_m[:, None] * stride_xm + off_k[None, :] * stride_xk
Ys = Y + off_k[:, None] * stride_yk + off_n[None, :] * stride_yn
Ws = W + off_n[:, None] * stride_wn + off_l[None, :] * stride_wl
Zs = Z + off_m[:, None] * stride_zm + off_n[None, :] * stride_zn
x = tl.load(Xs)
y = tl.load(Ys)
x = tl.trans(x) if TRANS_A else x
y = tl.trans(y) if TRANS_B else y
z = tl.dot(x, y, allow_tf32=ALLOW_TF32)
if ADD_MATRIX:
z += tl.load(Zs)
if ADD_ROWS:
ZRs = Z + off_m * stride_zm
z += tl.load(ZRs)[:, None]
if ADD_COLS:
ZCs = Z + off_n * stride_zn
z += tl.load(ZCs)[None, :]
if DO_SOFTMAX:
max = tl.max(z, 1)
z = z - max[:, None]
num = tl.exp(z)
den = tl.sum(num, 1)
z = num / den[:, None]
if CHAIN_DOT:
# tl.store(Zs, z)
# tl.debug_barrier()
z = tl.dot(tl.trans(z.to(tl.float16)), tl.load(Ws))
tl.store(Zs, z)
# input
rs = RandomState(17)
x = numpy_random((K, M) if trans_a else (M, K), dtype_str=dtype, rs=rs) * .1
y = numpy_random((N, K) if trans_b else (K, N), dtype_str=dtype, rs=rs) * .1
w = numpy_random((N, N), dtype_str=dtype, rs=rs) * .1
if allow_tf32:
x = (x.view('uint32') & np.uint32(0xffffe000)).view('float32')
y = (y.view('uint32') & np.uint32(0xffffe000)).view('float32')
w = (w.view('uint32') & np.uint32(0xffffe000)).view('float32')
x_tri = to_triton(x, device=device)
y_tri = to_triton(y, device=device)
w_tri = to_triton(w, device=device)
# triton result
z = 1 + numpy_random((M, N), dtype_str=dtype, rs=rs) * .1
z_tri = to_triton(z, device=device)
if epilogue == 'trans':
z_tri = torch.as_strided(z_tri, (M, N), z_tri.stride()[::-1])
pgm = kernel[(1, 1)](x_tri, x_tri.stride(0), x_tri.stride(1),
y_tri, y_tri.stride(0), y_tri.stride(1),
w_tri, w_tri.stride(0), w_tri.stride(1),
z_tri, z_tri.stride(0), z_tri.stride(1),
TRANS_A=trans_a, TRANS_B=trans_b,
BLOCK_M=M, BLOCK_K=K, BLOCK_N=N,
ADD_MATRIX=epilogue == 'add-matrix',
ADD_ROWS=epilogue == 'add-rows',
ADD_COLS=epilogue == 'add-cols',
DO_SOFTMAX=epilogue == 'softmax',
CHAIN_DOT=epilogue == 'chain-dot',
ALLOW_TF32=allow_tf32,
num_warps=num_warps)
# torch result
x_ref = x.T if trans_a else x
y_ref = y.T if trans_b else y
z_ref = np.matmul(x_ref, y_ref)
if epilogue == 'add-matrix':
z_ref += z
if epilogue == 'add-rows':
z_ref += z[:, 0][:, None]
if epilogue == 'add-cols':
z_ref += z[0, :][None, :]
if epilogue == 'softmax':
num = np.exp(z_ref - np.max(z_ref, axis=-1, keepdims=True))
denom = np.sum(num, axis=-1, keepdims=True)
z_ref = num / denom
if epilogue == 'chain-dot':
z_ref = np.matmul(z_ref.T, w)
# compare
# print(z_ref[:,0], z_tri[:,0])
np.testing.assert_allclose(z_ref, to_numpy(z_tri), rtol=0.01)
# make sure ld/st are vectorized
ptx = pgm.asm['ptx']
assert 'ld.global.v4' in ptx
assert 'st.global.v4' in ptx
if allow_tf32:
assert 'mma.sync.aligned.m16n8k8.row.col.f32.tf32.tf32.f32' in ptx
elif dtype == 'float32':
assert 'mma.sync.aligned.m16n8k8.row.col.f32.tf32.tf32.f32' not in ptx
elif dtype == 'int8':
assert 'mma.sync.aligned.m16n8k32.row.col.satfinite.s32.s8.s8.s32' in ptx
# def test_dot_without_load():

View File

@@ -1367,7 +1367,7 @@ prototype_pattern = {
"ptx": ptx_prototype_pattern,
}
mlir_arg_type_pattern = r'%\w+: ([^,\s]+)(?: \{\S+ = \S+ : \S+\})?,?'
mlir_arg_type_pattern = r'%\w+: ([^,^\)\s]+)(?: \{\S+ = \S+ : \S+\})?,?'
ptx_arg_type_pattern = r"\.param\s+\.(\w+)"
arg_type_pattern = {
"ttir": mlir_arg_type_pattern,
@@ -1424,7 +1424,9 @@ def compile(fn, **kwargs):
import re
match = re.search(prototype_pattern[ir], src, re.MULTILINE)
name, signature = match.group(1), match.group(2)
print(name, signature)
types = re.findall(arg_type_pattern[ir], signature)
print(types)
param_tys = [convert_type_repr(ty) for ty in types]
signature = {k: v for k, v in enumerate(param_tys)}
first_stage = list(stages.keys()).index(ir)

View File

@@ -614,6 +614,7 @@ class tensor:
assert False, "unsupported"
return ret
# x[:, None, :, None]
# x = expand_dims(x, axis=1)
# x = expand_dims(x, axis=2)
@@ -737,6 +738,9 @@ def broadcast_to(input, shape, _builder=None):
"""
return semantic.broadcast_impl_shape(input, shape, _builder)
@builtin
def trans(input, _builder=None):
return semantic.trans(input, _builder)
@builtin
def cat(input, other, _builder=None):

View File

@@ -502,6 +502,11 @@ def cat(lhs: tl.tensor, rhs: tl.tensor, builder: ir.builder) -> tl.tensor:
# TODO: check types
return tl.tensor(builder.create_cat(lhs.handle, rhs.handle), lhs.type)
def trans(input: tl.tensor, builder: ir.builder) -> tl.tensor:
if len(input.shape) != 2:
raise ValueError("Only 2D tensors can be transposed")
ret_type = tl.block_type(input.type.scalar, [input.shape[1], input.shape[0]])
return tl.tensor(builder.create_trans(input.handle), ret_type)
def broadcast_impl_shape(input: tl.tensor,
shape: List[int],

View File

@@ -32,7 +32,7 @@ def _fwd_kernel(
offs_n = tl.arange(0, BLOCK_N)
offs_d = tl.arange(0, BLOCK_DMODEL)
off_q = off_hz * stride_qh + offs_m[:, None] * stride_qm + offs_d[None, :] * stride_qk
off_k = off_hz * stride_qh + offs_n[None, :] * stride_kn + offs_d[:, None] * stride_kk
off_k = off_hz * stride_qh + offs_n[:, None] * stride_kn + offs_d[None, :] * stride_kk
off_v = off_hz * stride_qh + offs_n[:, None] * stride_qm + offs_d[None, :] * stride_qk
# Initialize pointers to Q, K, V
q_ptrs = Q + off_q
@@ -50,7 +50,7 @@ def _fwd_kernel(
# -- compute qk ----
k = tl.load(k_ptrs + start_n * stride_kn)
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
qk += tl.dot(q, k)
qk += tl.dot(q, tl.trans(k))
qk *= sm_scale
qk += tl.where(offs_m[:, None] >= (start_n + offs_n[None, :]), 0, float("-inf"))
# -- compute m_ij, p, l_ij
@@ -165,26 +165,26 @@ def _bwd_kernel(
q = tl.load(q_ptrs)
# recompute p = softmax(qk, dim=-1).T
# NOTE: `do` is pre-divided by `l`; no normalization here
qk = tl.dot(q, k, trans_b=True)
qk = tl.dot(q, tl.trans(k))
qk = tl.where(offs_m_curr[:, None] >= (offs_n[None, :]), qk, float("-inf"))
m = tl.load(m_ptrs + offs_m_curr)
p = tl.exp(qk * sm_scale - m[:, None])
# compute dv
do = tl.load(do_ptrs)
dv += tl.dot(p.to(tl.float16), do, trans_a=True)
dv += tl.dot(tl.trans(p.to(tl.float16)), do)
# compute dp = dot(v, do)
Di = tl.load(D_ptrs + offs_m_curr)
dp = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) - Di[:, None]
dp += tl.dot(do, v, trans_b=True)
dp += tl.dot(do, tl.trans(v))
# compute ds = p * (dp - delta[:, None])
ds = p * dp * sm_scale
# compute dk = dot(ds.T, q)
dk += tl.dot(ds.to(tl.float16), q, trans_a=True)
# # compute dq
dk += tl.dot(tl.trans(ds.to(tl.float16)), q)
# compute dq
dq = tl.load(dq_ptrs)
dq += tl.dot(ds.to(tl.float16), k)
tl.store(dq_ptrs, dq)
# # increment pointers
# increment pointers
dq_ptrs += BLOCK_M * stride_qm
q_ptrs += BLOCK_M * stride_qm
do_ptrs += BLOCK_M * stride_qm
@@ -273,7 +273,7 @@ attention = _attention.apply
@pytest.mark.parametrize('Z, H, N_CTX, D_HEAD', [(4, 48, 1024, 64)])
def test_op(Z, H, N_CTX, D_HEAD, dtype=torch.float16):
torch.manual_seed(20)
q = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0.1, std=0.1).requires_grad_()
q = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0.1, std=0.2).requires_grad_()
k = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0.4, std=0.2).requires_grad_()
v = torch.empty((Z, H, N_CTX, D_HEAD), dtype=dtype, device="cuda").normal_(mean=0.3, std=0.2).requires_grad_()
sm_scale = 0.2
@@ -287,23 +287,23 @@ def test_op(Z, H, N_CTX, D_HEAD, dtype=torch.float16):
p = torch.softmax(p.float(), dim=-1).half()
# p = torch.exp(p)
ref_out = torch.matmul(p, v)
# ref_out.backward(dout)
# ref_dv, v.grad = v.grad.clone(), None
# ref_dk, k.grad = k.grad.clone(), None
# ref_dq, q.grad = q.grad.clone(), None
ref_out.backward(dout)
ref_dv, v.grad = v.grad.clone(), None
ref_dk, k.grad = k.grad.clone(), None
ref_dq, q.grad = q.grad.clone(), None
# # triton implementation
tri_out = attention(q, k, v, sm_scale)
# print(ref_out)
# print(tri_out)
# tri_out.backward(dout)
# tri_dv, v.grad = v.grad.clone(), None
# tri_dk, k.grad = k.grad.clone(), None
# tri_dq, q.grad = q.grad.clone(), None
tri_out.backward(dout)
tri_dv, v.grad = v.grad.clone(), None
tri_dk, k.grad = k.grad.clone(), None
tri_dq, q.grad = q.grad.clone(), None
# compare
triton.testing.assert_almost_equal(ref_out, tri_out)
# triton.testing.assert_almost_equal(ref_dv, tri_dv)
# triton.testing.assert_almost_equal(ref_dk, tri_dk)
# triton.testing.assert_almost_equal(ref_dq, tri_dq)
triton.testing.assert_almost_equal(ref_dv, tri_dv)
triton.testing.assert_almost_equal(ref_dk, tri_dk)
triton.testing.assert_almost_equal(ref_dq, tri_dq)
BATCH, N_HEADS, N_CTX, D_HEAD = 4, 48, 4096, 64
# vary seq length for fixed head and batch=4
@@ -350,4 +350,4 @@ def bench_flash_attention(BATCH, H, N_CTX, D_HEAD, mode, provider, dtype=torch.f
ms = triton.testing.do_bench(fn, percentiles=None, warmup=warmup, rep=rep)
return ms
bench_flash_attention.run(save_path='.', print_data=True)
# bench_flash_attention.run(save_path='.', print_data=True)