[GENERAL] Various bugfixes
This commit is contained in:
committed by
Philippe Tillet
parent
50587bbf4b
commit
8f8d36c7a4
@@ -362,6 +362,30 @@ void generator::visit_unmasked_load_inst(ir::unmasked_load_inst* x) {
|
||||
}
|
||||
|
||||
void generator::visit_masked_load_inst(ir::masked_load_inst* x) {
|
||||
if(!x->get_type()->is_tile_ty()){
|
||||
Value *ptr = vmap_.at(x->get_pointer_operand());
|
||||
Value *mask = vmap_.at(x->get_mask_operand());
|
||||
BasicBlock *current_bb = builder_->GetInsertBlock();
|
||||
Function *parent = builder_->GetInsertBlock()->getParent();
|
||||
BasicBlock *mask_then_bb = BasicBlock::Create(*ctx_, "mask_then", parent);
|
||||
BasicBlock *mask_done_bb = BasicBlock::Create(*ctx_, "mask_done", parent);
|
||||
builder_->CreateCondBr(mask, mask_then_bb, mask_done_bb);
|
||||
builder_->SetInsertPoint(mask_then_bb);
|
||||
Value *result_then = builder_->CreateLoad(ptr);
|
||||
builder_->CreateBr(mask_done_bb);
|
||||
builder_->SetInsertPoint(mask_done_bb);
|
||||
Value *result = nullptr;
|
||||
if(x->get_false_value_operand()){
|
||||
Value *result_false = vmap_.at(x->get_false_value_operand());
|
||||
result = builder_->CreatePHI(result_then->getType(), 2);
|
||||
((PHINode*)result)->addIncoming(result_then, mask_then_bb);
|
||||
((PHINode*)result)->addIncoming(result_false, current_bb);
|
||||
}
|
||||
else
|
||||
result = result_then;
|
||||
vmap_[x] = result;
|
||||
return;
|
||||
}
|
||||
// find vector size
|
||||
ir::value *ptr = x->get_pointer_operand();
|
||||
auto order = layouts_->get(ptr)->get_order();
|
||||
@@ -677,6 +701,8 @@ void generator::visit_atomic_exch_inst(ir::atomic_exch_inst* xchg) {
|
||||
}
|
||||
|
||||
void generator::visit_atomic_add_inst(ir::atomic_add_inst* add) {
|
||||
|
||||
|
||||
if(add->get_type()->is_tile_ty()){
|
||||
ir::value* ptr = add->get_operand(0);
|
||||
ir::value* val = add->get_operand(1);
|
||||
@@ -684,21 +710,36 @@ void generator::visit_atomic_add_inst(ir::atomic_add_inst* add) {
|
||||
distributed_tile* ptrs = (distributed_tile*)tmap_.at(ptr);
|
||||
distributed_tile* vals = (distributed_tile*)tmap_.at(val);
|
||||
distributed_tile* msks = (distributed_tile*)tmap_.at(msk);
|
||||
|
||||
for_each(ptr, [&](indices_t idx){
|
||||
Value *rmw_ptr = ptrs->get_value(idx);
|
||||
Value *rmw_val = vals->get_value(idx);
|
||||
Value *rmw_msk = msks->get_value(idx);
|
||||
BasicBlock *current_bb = builder_->GetInsertBlock();
|
||||
Function *parent = builder_->GetInsertBlock()->getParent();
|
||||
BasicBlock *mask_then_bb = BasicBlock::Create(*ctx_, "mask_then", parent);
|
||||
BasicBlock *mask_done_bb = BasicBlock::Create(*ctx_, "mask_done", parent);
|
||||
builder_->CreateCondBr(rmw_msk, mask_then_bb, mask_done_bb);
|
||||
builder_->SetInsertPoint(mask_then_bb);
|
||||
builder_->CreateAtomicRMW(AtomicRMWInst::FAdd, rmw_ptr, rmw_val,
|
||||
AtomicOrdering::Unordered,
|
||||
SyncScope::System);
|
||||
builder_->CreateBr(mask_done_bb);
|
||||
builder_->SetInsertPoint(mask_done_bb);
|
||||
// num bytes
|
||||
Type* ty = rmw_val->getType();
|
||||
size_t nbits = ty->getScalarSizeInBits();
|
||||
// extract pointer offset
|
||||
std::string offset = "";
|
||||
if(GetElementPtrInst *gep = dyn_cast<GetElementPtrInst>(rmw_ptr))
|
||||
if(gep->getNumIndices() == 1)
|
||||
if(ConstantInt *cst = dyn_cast<ConstantInt>(gep->idx_begin())){
|
||||
offset = " + " + std::to_string(cst->getValue().getSExtValue()*nbits/8);
|
||||
rmw_ptr = gep->getPointerOperand();
|
||||
}
|
||||
rmw_ptr = builder_->CreateBitCast(rmw_ptr, ty->getPointerTo(1));
|
||||
// asm argument type
|
||||
std::vector<Type*> arg_ty = {rmw_msk->getType(), rmw_ptr->getType(), rmw_val->getType()};
|
||||
// asm function type
|
||||
FunctionType *fn_ty = FunctionType::get(ty, arg_ty, false);
|
||||
// asm string
|
||||
std::string mod = nbits == 32 ? "" : ".noftz";
|
||||
std::string asm_str = "@$0 atom.global.sys.add" + mod + ".f" + std::to_string(nbits) + " $1, [$2" + offset + "], $3;";
|
||||
std::string ty_id = nbits == 32 ? "f" : "h";
|
||||
std::string constraint = "b,=" + ty_id + ",l," + ty_id;
|
||||
// create inline asm
|
||||
InlineAsm *iasm = InlineAsm::get(fn_ty, asm_str, constraint, true);
|
||||
// call asm
|
||||
builder_->CreateCall(iasm, {rmw_msk, rmw_ptr, rmw_val});
|
||||
});
|
||||
}
|
||||
else{
|
||||
@@ -803,6 +844,7 @@ void generator::visit_hmma_dot(ir::dot_inst* dot, shared_tile *TA, shared_tile *
|
||||
indices_t idx_b = {builder_->CreateAdd(offset_b_k, _K), current_offset_b_i};
|
||||
idx_a.insert(idx_a.end(), x.first.begin(), x.first.end());
|
||||
idx_b.insert(idx_b.end(), x.first.begin(), x.first.end());
|
||||
|
||||
Value *ha = TA->get_value(idx_a);
|
||||
Value *hb = TB->get_value(idx_b);
|
||||
for(unsigned ii = 0; ii < hmma->pack_size_0_; ii++)
|
||||
|
@@ -255,7 +255,6 @@ cu_module::cu_module(driver::context * context, std::unique_ptr<llvm::Module> ll
|
||||
|
||||
cu_module::cu_module(driver::context * context, std::string const & source) : module(context, CUmodule(), true), source_(source){
|
||||
cu_context::context_switcher ctx(*context);
|
||||
// std::cout << source << std::endl;
|
||||
// JIT compile source-code
|
||||
CUjit_option opt[] = {CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES, CU_JIT_ERROR_LOG_BUFFER};
|
||||
unsigned int errbufsize = 8096;
|
||||
@@ -264,10 +263,11 @@ cu_module::cu_module(driver::context * context, std::string const & source) : mo
|
||||
try{
|
||||
dispatch::cuModuleLoadDataEx(&*cu_, source_.data(), 2, opt, optval);
|
||||
}catch(exception::cuda::base const &){
|
||||
#ifdef TRITON_LOG_PTX_ERROR
|
||||
std::cerr << "Compilation Failed! Log: " << std::endl;
|
||||
//#ifdef TRITON_LOG_PTX_ERROR
|
||||
std::cout << source << std::endl;
|
||||
std::cerr << "It appears that Triton produced invalid PTX code:" << std::endl;
|
||||
std::cerr << errbuf << std::endl;
|
||||
#endif
|
||||
//#endif
|
||||
throw;
|
||||
}
|
||||
}
|
||||
|
@@ -231,7 +231,7 @@ void Generator::VisitConditionalOp(ConditionalOp* condOp) {
|
||||
VisitExpr(condOp->exprFalse_);
|
||||
ir::value* false_val = ret_;
|
||||
if(ir::unmasked_load_inst* ld = dynamic_cast<ir::unmasked_load_inst*>(true_val)) {
|
||||
if(!false_val->get_type()->is_tile_ty())
|
||||
if(true_val->get_type()->is_tile_ty() && !false_val->get_type()->is_tile_ty())
|
||||
false_val = bld_->create_splat(false_val, cond->get_type()->get_tile_shapes());
|
||||
ir::value* new_ld = bld_->create_masked_load(ld->get_pointer_operand(),
|
||||
cond,
|
||||
|
@@ -238,8 +238,8 @@ std::unique_ptr<driver::module> function::make_bin(ir::module &module,
|
||||
if(allocation.allocated_size() > context->device()->max_shared_memory())
|
||||
throw std::runtime_error("using too much shared memory");
|
||||
barriers.run(module);
|
||||
//ir::print(module, std::cout);
|
||||
isel.visit(module, *llvm);
|
||||
// ir::print(module, std::cout);
|
||||
std::unique_ptr<driver::module> res(driver::module::create(context, std::move(llvm)));
|
||||
return res;
|
||||
}
|
||||
@@ -364,6 +364,7 @@ std::string function::preheader() {
|
||||
|
||||
DECLARATION(float, 64, 64);
|
||||
DECLARATION(half , 64, 64);
|
||||
DECLARATION(half , 128, 128);
|
||||
|
||||
extern int atomic_cas(int*, int, int);
|
||||
extern int atomic_xchg(int*, int);
|
||||
|
@@ -3,16 +3,16 @@ import triton
|
||||
|
||||
class _dot(torch.autograd.Function):
|
||||
src = """
|
||||
__global__ void dot(TYPE *A __noalias __readonly __aligned(16),
|
||||
TYPE *B __noalias __readonly __aligned(16),
|
||||
TYPE *C __noalias __aligned(16),
|
||||
float alpha,
|
||||
int M __retune,
|
||||
int N __retune,
|
||||
int K __retune,
|
||||
int lda __multipleof(8),
|
||||
int ldb __multipleof(8),
|
||||
int ldc __multipleof(8)) {
|
||||
__global__ void dot(TYPE * A __noalias __readonly __aligned(16),
|
||||
TYPE * B __noalias __readonly __aligned(16),
|
||||
TYPE * C __noalias __aligned(16),
|
||||
float alpha,
|
||||
int M __retune,
|
||||
int N __retune,
|
||||
int K __retune __multipleof(16),
|
||||
int lda __multipleof(8),
|
||||
int ldb __multipleof(8),
|
||||
int ldc __multipleof(8)) {
|
||||
// prologue
|
||||
int ridx = get_program_id(0);
|
||||
int ridy = get_program_id(1);
|
||||
@@ -95,11 +95,12 @@ class _dot(torch.autograd.Function):
|
||||
if dtype not in _dot.kernel:
|
||||
defines = {
|
||||
'TYPE' : dtype,
|
||||
'SHAPE_A': 'TM, TK', 'SHAPE_B': 'TK, TN',
|
||||
'STRIDE_AM': 'lda', 'STRIDE_AK': '1',
|
||||
'STRIDE_BN': '1', 'STRIDE_BK': 'ldb',
|
||||
'TM' : [64, 128],
|
||||
'TN' : [64, 128],
|
||||
'TK' : [8, 16],
|
||||
'TM' : [128],
|
||||
'TN' : [128],
|
||||
'TK' : [16],
|
||||
'TZ' : [1]
|
||||
}
|
||||
_dot.kernel[dtype] = triton.kernel(_dot.src, num_warps=[4], defines=defines)
|
||||
@@ -120,7 +121,7 @@ dot = _dot.apply
|
||||
|
||||
torch.manual_seed(0)
|
||||
|
||||
M, N, K = 2048, 2048, 2048
|
||||
M, N, K = 4096, 4096, 4096
|
||||
a = torch.rand((M, K)).cuda().half()
|
||||
b = torch.rand((K, N)).cuda().half()
|
||||
|
||||
@@ -130,4 +131,5 @@ b = torch.rand((K, N)).cuda().half()
|
||||
zc = torch.matmul(a,b)
|
||||
zc_ = dot(a,b)
|
||||
|
||||
|
||||
print(torch.allclose(zc, zc_))
|
||||
|
@@ -51,11 +51,6 @@ std::string get_fn_ptx(const map_key_t& key, const rt::function::options_t& opt)
|
||||
return id_fn_map[key]->ptx(&stream, opt);
|
||||
}
|
||||
|
||||
void register_cst(const map_key_t& key, const std::string& name, pybind11::buffer& data) {
|
||||
pybind11::buffer_info info = data.request();
|
||||
id_fn_map[key]->set_cst(name, info.ptr, info.size*info.itemsize);
|
||||
}
|
||||
|
||||
void cleanup() {
|
||||
id_grid_map.clear();
|
||||
id_fn_map.clear();
|
||||
@@ -134,7 +129,6 @@ PYBIND11_MODULE(libtriton, m) {
|
||||
m.def("register_grid", ®ister_grid);
|
||||
m.def("delete_grid", &delete_grid);
|
||||
m.def("register_fn", ®ister_fn);
|
||||
m.def("register_cst", ®ister_cst);
|
||||
m.def("delete_fn", &delete_fn);
|
||||
m.def("make_op_id", &make_op_id);
|
||||
m.def("cleanup", &cleanup);
|
||||
|
@@ -31,19 +31,25 @@ CUstream torch_get_cuda_stream(int64_t dev_id) {
|
||||
return (CUstream)at::cuda::getCurrentCUDAStream(dev_id).stream();
|
||||
}
|
||||
|
||||
void launch_kernel(int64_t op_id, int64_t dev_id, const std::string& args){
|
||||
void launch_kernel(int64_t op_id, int64_t dev_id, const std::string& args,
|
||||
const std::vector<std::string>& constant_names, const std::vector<torch::Tensor>& constant_vals){
|
||||
rt::function* fn = id_fn_map.at({op_id, dev_id}).get();
|
||||
for(size_t n = 0; n < constant_names.size(); n++){
|
||||
const torch::Tensor& x = constant_vals[n];
|
||||
fn->set_cst(constant_names[n], (char*)x.data_ptr(), x.numel()*x.element_size());
|
||||
}
|
||||
if(dev_id == -1){
|
||||
if(!host_stream){
|
||||
host_device.reset(new drv::host_device());
|
||||
host_context.reset(drv::context::create(&*host_device));
|
||||
host_stream.reset(drv::stream::create(&*host_context));
|
||||
}
|
||||
(*id_fn_map.at({op_id, dev_id}))((void**)args.c_str(), args.size(), *id_grid_map.at({op_id, dev_id}), &*host_stream);
|
||||
(*fn)((void**)args.c_str(), args.size(), *id_grid_map.at({op_id, dev_id}), &*host_stream);
|
||||
}
|
||||
else{
|
||||
triton::driver::cu_stream stream(torch_get_cuda_stream(dev_id), false);
|
||||
triton::driver::context* ctx = stream.context();
|
||||
(*id_fn_map.at({op_id, dev_id}))((void**)args.c_str(), args.size(), *id_grid_map.at({op_id, dev_id}), &stream);
|
||||
(*fn)((void**)args.c_str(), args.size(), *id_grid_map.at({op_id, dev_id}), &stream);
|
||||
}
|
||||
}
|
||||
|
||||
|
@@ -63,9 +63,6 @@ class kernel:
|
||||
size = sum([sizes[x] for x in arg_types])
|
||||
self.tys = ''.join([codes[x] for x in arg_types])
|
||||
|
||||
def set_constant(self, device, name, value):
|
||||
libtriton.register_cst((self.op_id, device), name, value)
|
||||
|
||||
def ptx(self, device, **kwargs):
|
||||
dev_id = device.index
|
||||
libtriton.register_fn((self.op_id, dev_id), self.src, self.opt)
|
||||
@@ -103,5 +100,7 @@ class kernel:
|
||||
if 'autotune_buf' in kwargs:
|
||||
pass
|
||||
# launch
|
||||
params = pack(self.tys, *[x.data_ptr() if isinstance(x, torch.Tensor) else x for x in args])
|
||||
torch.ops.triton.launch_kernel(self.op_id, device, params)
|
||||
params = pack(self.tys, *[x.data_ptr() if isinstance(x, torch.Tensor) else x for x in args])
|
||||
names = list(kwargs['constants'].keys()) if 'constants' in kwargs else []
|
||||
constants = list(kwargs['constants'].values()) if 'constants' in kwargs else []
|
||||
torch.ops.triton.launch_kernel(self.op_id, device, params, names, constants)
|
@@ -9,7 +9,7 @@ int main() {
|
||||
// shapes to benchmark
|
||||
typedef std::tuple<std::vector<int>, bool, bool, int, int, int> config_t;
|
||||
std::vector<config_t> configs;
|
||||
for(auto ord: std::vector<std::vector<int>>{{0, 1}})
|
||||
for(auto ord: std::vector<std::vector<int>>{{1, 0}})
|
||||
for(auto x: std::vector<std::array<bool, 2>>{{false, true}, {false, false}, {true, false}, {true, true}}){
|
||||
std::vector<config_t> tmp = {
|
||||
// config_t{ord, x[0], x[1], 128, 128, 128},
|
||||
@@ -21,7 +21,7 @@ int main() {
|
||||
// config_t{ord, x[0], x[1], 1280, 1280, 1280},
|
||||
// config_t{ord, x[0], x[1], 1536, 1536, 1536},
|
||||
// config_t{ord, x[0], x[1], 2048, 2048, 2048},
|
||||
config_t{ord, x[0], x[1], 8192, 8192, 8192},
|
||||
config_t{ord, x[0], x[1], 4096, 4096, 4096},
|
||||
|
||||
// config_t{ord, x[0], x[1], 256, 16, 256},
|
||||
// config_t{ord, x[0], x[1], 512, 16, 512},
|
||||
|
@@ -147,7 +147,7 @@ inline cublasGemmAlgo_t cublasGemmFastest(
|
||||
M, N, K,
|
||||
alpha, (const void*)A, cudt, lda,
|
||||
(const void*)B, cudt, ldb,
|
||||
beta, (void*)C, cudt, ldc, cudt,
|
||||
beta, (void*)C, cudt, ldc, CUDA_R_32F,
|
||||
a); }, stream);
|
||||
if(status != CUBLAS_STATUS_SUCCESS)
|
||||
nanosec = INFINITY;
|
||||
@@ -216,6 +216,6 @@ inline void cublasGemm(cublasDataType_t dtype,
|
||||
cublasStatus_t status = cublas::cublasGemmEx(handle, opa, opb, M, N, K,
|
||||
alpha, (const void*)*A->cu(), dtype, lda,
|
||||
(const void*)*B->cu(), dtype, ldb,
|
||||
beta, (void*)*C->cu(), dtype, ldc, dtype, algo);
|
||||
beta, (void*)*C->cu(), dtype, ldc, CUDA_R_32F, algo);
|
||||
}
|
||||
}
|
||||
|
@@ -152,16 +152,16 @@ void triton_dot(drv::stream* stream, bool AT, bool BT,
|
||||
bench.push_back(tflops(triton_ns));
|
||||
|
||||
// cublas
|
||||
// if(cublas::cublasinit()){
|
||||
// T alpha(static_cast<double>(1));
|
||||
// T beta(static_cast<double>(0));
|
||||
// cublasGemmAlgo_t fastest;
|
||||
// cublasGemm(CUDA_R_32F, stream, AT, BT, M, N, K, &alpha, &*da, lda, &*db, ldb, &beta, &*dc, ldc, &fastest);
|
||||
// double cublas_ms = triton::tools::bench([&]() { cublasGemm(CUDA_R_32F, stream, AT, BT, M, N, K,
|
||||
// &alpha, &*da, lda, &*db, ldb, &beta, &*dc,
|
||||
// ldc, nullptr, fastest); }, stream);
|
||||
// bench.push_back(tflops(cublas_ms));
|
||||
// }
|
||||
if(cublas::cublasinit()){
|
||||
T alpha(static_cast<double>(1));
|
||||
T beta(static_cast<double>(0));
|
||||
cublasGemmAlgo_t fastest;
|
||||
cublasGemm(CUDA_R_16F, stream, AT, BT, M, N, K, &alpha, &*da, lda, &*db, ldb, &beta, &*dc, ldc, &fastest);
|
||||
double cublas_ms = triton::tools::bench([&]() { cublasGemm(CUDA_R_16F, stream, AT, BT, M, N, K,
|
||||
&alpha, &*da, lda, &*db, ldb, &beta, &*dc,
|
||||
ldc, nullptr, fastest); }, stream);
|
||||
bench.push_back(tflops(cublas_ms));
|
||||
}
|
||||
}
|
||||
|
||||
// test triton
|
||||
|
Reference in New Issue
Block a user