[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-08-15 00:49:17 +00:00
parent 36804ec20e
commit 943e27aa53
165 changed files with 312 additions and 312 deletions

View File

@@ -324,7 +324,7 @@ for different problem sizes.</p>
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 76.800002 76.800002
3 32768.0 63.999998 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 384.000001
@@ -339,7 +339,7 @@ for different problem sizes.</p>
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 42.563 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 41.931 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,17 +374,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 188.321838
0 256.0 512.000001 546.133347 190.511628
1 384.0 614.400016 585.142862 153.600004
2 512.0 655.360017 585.142849 154.566038
2 512.0 655.360017 606.814814 154.566038
3 640.0 682.666684 640.000002 160.000000
4 768.0 722.823517 664.216187 163.839992
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 812.359066 406.603966 199.038365
94 12288.0 814.111783 416.101597 199.298541
95 12416.0 814.163950 413.006241 198.854847
96 12544.0 812.566838 412.971190 199.111113
97 12672.0 812.633240 412.516771 199.167004
93 12160.0 812.359066 406.179533 198.936606
94 12288.0 814.111783 415.661740 199.197579
95 12416.0 812.498981 412.149375 198.655991
96 12544.0 812.566838 412.546756 199.111113
97 12672.0 812.633240 412.097543 199.069228
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 22.469 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 21.826 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -568,42 +568,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 2.978909 2.978909
1 384.0 7.372800 ... 8.507077 7.899428
0 256.0 2.978909 ... 2.978909 2.978909
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 49.932191 ... 53.773130 52.428801
7 1152.0 45.242181 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.109587
9 1408.0 64.138541 ... 67.305878 66.485074
10 1536.0 80.430545 ... 79.526831 78.643199
11 1664.0 62.929456 ... 62.061463 62.061463
12 1792.0 72.512412 ... 71.588687 71.588687
13 1920.0 68.776119 ... 70.172588 70.530615
14 2048.0 73.908442 ... 77.314362 76.959706
15 2176.0 83.155572 ... 86.367588 85.269692
5 896.0 39.025776 ... 39.025776 39.025776
6 1024.0 51.150050 ... 52.428801 52.428801
7 1152.0 45.242181 ... 47.396572 46.656000
8 1280.0 51.200001 ... 56.888887 56.888887
9 1408.0 64.138541 ... 67.305878 67.305878
10 1536.0 80.430545 ... 79.526831 79.526831
11 1664.0 63.372618 ... 62.061463 62.061463
12 1792.0 72.512412 ... 72.047592 71.588687
13 1920.0 69.120002 ... 70.172588 70.172588
14 2048.0 73.908442 ... 76.959706 76.959706
15 2176.0 83.500614 ... 85.998493 85.269692
16 2304.0 68.446623 ... 76.809875 76.563695
17 2432.0 71.305746 ... 74.918570 84.877538
18 2560.0 77.833728 ... 81.310171 81.108913
19 2688.0 83.552988 ... 90.102270 88.732296
20 2816.0 82.602666 ... 83.712490 82.759409
21 2944.0 81.967162 ... 82.578347 82.646820
22 3072.0 82.062468 ... 87.651868 86.579673
23 3200.0 84.544253 ... 89.887639 94.674553
24 3328.0 83.226931 ... 81.346098 83.710812
25 3456.0 82.688790 ... 90.180725 91.097818
26 3584.0 85.430303 ... 92.505546 97.522120
27 3712.0 85.528545 ... 85.672957 87.552452
28 3840.0 84.292684 ... 87.148936 91.022218
29 3968.0 86.973584 ... 90.656713 84.856701
30 4096.0 93.531519 ... 83.416859 87.267706
18 2560.0 77.833728 ... 81.310171 80.313727
19 2688.0 83.922689 ... 89.676257 88.422041
20 2816.0 80.617762 ... 83.392363 83.233226
21 2944.0 82.373605 ... 82.373605 81.298583
22 3072.0 82.540970 ... 88.335577 88.060814
23 3200.0 83.769634 ... 95.096582 94.674553
24 3328.0 84.003845 ... 83.516586 84.003845
25 3456.0 82.015834 ... 89.183149 84.597660
26 3584.0 86.043434 ... 97.416461 96.579370
27 3712.0 81.548851 ... 88.797643 84.946722
28 3840.0 83.908951 ... 91.097196 85.930069
29 3968.0 91.301109 ... 86.175099 89.068569
30 4096.0 88.534120 ... 93.206754 89.240508
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 27.557 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 21.527 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -371,7 +371,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.010 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.011 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -194,36 +194,36 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 311.088617 99.497980 307.200008
1 1536.0 351.085717 135.032961 344.523365
2 2048.0 427.408686 159.584422 323.368435
3 2560.0 461.954908 182.857144 326.808501
4 3072.0 515.580429 192.501302 316.429186
5 3584.0 554.941930 208.271186 308.301075
6 4096.0 568.231237 219.919464 297.890900
7 4608.0 500.416301 233.316456 291.031570
8 5120.0 527.381977 240.941184 285.104413
9 5632.0 538.517949 243.985547 289.438969
10 6144.0 546.133354 249.081070 286.322318
11 6656.0 525.473708 256.000009 285.767438
12 7168.0 512.000004 259.475119 284.821192
13 7680.0 485.052616 263.690977 277.172933
14 8192.0 463.698115 266.406514 284.939124
15 8704.0 417.791980 267.472468 285.767450
16 9216.0 431.157889 272.059034 289.507855
17 9728.0 439.683593 280.278512 290.027323
18 10240.0 446.836366 287.102804 290.496460
19 10752.0 430.797982 246.229020 290.594591
20 11264.0 429.786952 246.882202 288.204696
21 11776.0 422.457417 248.788725 287.804473
22 12288.0 420.701865 254.453844 294.029924
23 12800.0 416.260178 253.256381 287.910035
24 13312.0 411.711355 252.161013 289.916513
25 13824.0 406.588243 256.991469 292.313649
26 14336.0 396.387109 254.673567 287.919661
27 14848.0 383.380322 257.479779 289.246765
28 15360.0 376.547496 258.332158 286.656296
29 15872.0 366.982663 262.527914 290.562936
0 1024.0 311.088617 98.303995 303.407414
1 1536.0 351.085717 134.540150 338.201833
2 2048.0 423.724127 161.154101 323.368435
3 2560.0 465.454542 180.705883 326.808501
4 3072.0 515.580429 191.999993 320.556515
5 3584.0 554.941930 208.271186 311.652167
6 4096.0 568.231237 220.412561 298.796351
7 4608.0 500.416301 232.825259 286.507772
8 5120.0 527.381977 241.889751 283.133649
9 5632.0 540.671974 243.107920 290.683877
10 6144.0 544.118087 248.661056 286.322318
11 6656.0 532.479975 256.000009 286.279570
12 7168.0 507.469040 259.867079 285.767449
13 7680.0 481.253256 262.564106 276.341823
14 8192.0 463.698115 264.970349 284.115618
15 8704.0 416.958106 267.815384 284.987724
16 9216.0 430.319054 270.727053 287.251954
17 9728.0 438.857162 280.278512 289.667485
18 10240.0 447.650282 286.100109 288.112552
19 10752.0 432.241202 246.229020 289.941565
20 11264.0 429.786952 245.760001 286.980888
21 11776.0 423.089806 248.788725 288.391833
22 12288.0 419.504980 254.453844 294.764603
23 12800.0 414.016170 253.047766 288.450715
24 13312.0 411.711355 252.161013 290.443638
25 13824.0 406.090579 256.792581 292.056329
26 14336.0 394.116833 254.485198 287.198654
27 14848.0 384.414233 257.665934 290.188916
28 15360.0 375.015246 257.790220 285.104419
29 15872.0 366.629453 261.986243 290.784741
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 11.866 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 11.478 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>12:44.465</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>12:36.772</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,23 +183,23 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:27.557</p></td>
<td><p>05:21.527</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:22.469</p></td>
<td><p>03:21.826</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:11.866</p></td>
<td><p>02:11.478</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:42.563</p></td>
<td><p>01:41.931</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.010</p></td>
<td><p>00:00.011</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>