[BACKEND] Codegen bringup, index calculation of blocked_layout & support of LoadOp, BroadcastOp, ViewOp & MakeRangeOp (#38)
Co-authored-by: gzhu <gzhu@nvidia.com>
This commit is contained in:
@@ -1,7 +1,9 @@
|
||||
#ifndef TRITON_CONVERSION_PASSDETAIL_H
|
||||
#define TRITON_CONVERSION_PASSDETAIL_H
|
||||
|
||||
#include "mlir/Dialect/GPU/GPUDialect.h"
|
||||
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
|
||||
#include "mlir/Dialect/LLVMIR/NVVMDialect.h"
|
||||
#include "mlir/Pass/Pass.h"
|
||||
#include "triton/Dialect/Triton/IR/Dialect.h"
|
||||
#include "triton/Dialect/TritonGPU/IR/Dialect.h"
|
||||
|
@@ -13,6 +13,9 @@ add_mlir_conversion_library(TritonGPUToLLVM
|
||||
LINK_LIBS PUBLIC
|
||||
MLIRIR
|
||||
MLIRPass
|
||||
MLIRGPUOps
|
||||
MLIRGPUToNVVMTransforms
|
||||
MLIRGPUTransforms
|
||||
TritonIR
|
||||
TritonGPUIR
|
||||
TritonGPUTransforms
|
||||
|
@@ -1,9 +1,14 @@
|
||||
#include "triton/Conversion/TritonGPUToLLVM/TritonGPUToLLVM.h"
|
||||
|
||||
#include "../PassDetail.h"
|
||||
#include "mlir/Conversion/ArithmeticToLLVM/ArithmeticToLLVM.h"
|
||||
#include "mlir/Conversion/GPUToNVVM/GPUToNVVMPass.h"
|
||||
#include "mlir/Conversion/LLVMCommon/LoweringOptions.h"
|
||||
#include "mlir/Conversion/LLVMCommon/Pattern.h"
|
||||
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
|
||||
#include "mlir/Dialect/GPU/GPUDialect.h"
|
||||
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
|
||||
#include "mlir/IR/Matchers.h"
|
||||
#include "mlir/Transforms/DialectConversion.h"
|
||||
#include "triton/Conversion/TritonToTritonGPU/TritonToTritonGPU.h"
|
||||
#include "triton/Dialect/Triton/IR/Dialect.h"
|
||||
@@ -12,6 +17,9 @@
|
||||
|
||||
using namespace mlir;
|
||||
using namespace mlir::triton;
|
||||
using ::mlir::triton::gpu::TritonGPUBlockedEncodingAttr;
|
||||
using ::mlir::triton::gpu::TritonGPUMmaEncodingAttr;
|
||||
using ::mlir::triton::gpu::TritonGPUSharedEncodingAttr;
|
||||
|
||||
namespace mlir {
|
||||
namespace LLVM {
|
||||
@@ -23,6 +31,8 @@ static StringRef getStructAttrsAttrName() { return "llvm.struct_attrs"; }
|
||||
|
||||
namespace {
|
||||
|
||||
class TritonGPUToLLVMTypeConverter;
|
||||
|
||||
// The following code are borrowed from mlir project including the following
|
||||
// functions or classes:
|
||||
// - filterFuncAttributes
|
||||
@@ -134,17 +144,7 @@ protected:
|
||||
static constexpr StringRef kEmitIfaceAttrName = "llvm.emit_c_interface";
|
||||
struct FuncOpConversion : public FuncOpConversionBase {
|
||||
FuncOpConversion(LLVMTypeConverter &converter, int numWarps)
|
||||
: FuncOpConversionBase(converter), NumWarps(numWarps) {
|
||||
mlir::ConvertToLLVMPattern::getTypeConverter()->addConversion(
|
||||
[&](triton::PointerType type) {
|
||||
return convertTritonPointerType(type);
|
||||
});
|
||||
}
|
||||
|
||||
Type convertTritonPointerType(triton::PointerType type) {
|
||||
return LLVM::LLVMPointerType::get(type.getPointeeType(),
|
||||
type.getAddressSpace());
|
||||
}
|
||||
: FuncOpConversionBase(converter), NumWarps(numWarps) {}
|
||||
|
||||
LogicalResult
|
||||
matchAndRewrite(FuncOp funcOp, OpAdaptor adaptor,
|
||||
@@ -172,7 +172,7 @@ struct ReturnOpConversion : public ConvertOpToLLVMPattern<::mlir::ReturnOp> {
|
||||
using ConvertOpToLLVMPattern<ReturnOp>::ConvertOpToLLVMPattern;
|
||||
|
||||
LogicalResult
|
||||
matchAndRewrite(ReturnOp op, OpAdaptor adapter,
|
||||
matchAndRewrite(ReturnOp op, OpAdaptor adaptor,
|
||||
ConversionPatternRewriter &rewriter) const override {
|
||||
Location loc = op->getLoc();
|
||||
unsigned numArguments = op.getNumOperands();
|
||||
@@ -208,12 +208,631 @@ int extractNumWarps(mlir::ModuleOp module) {
|
||||
return numWarps;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
template <typename T>
|
||||
static SmallVector<T> getMultiDimIndex(T linear_index, ArrayRef<T> shape) {
|
||||
// sizes {a, b, c, d} -> acc_mul {b*c*d, c*d, d, 1}
|
||||
size_t rank = shape.size();
|
||||
T acc_mul = 1;
|
||||
for (size_t i = 1; i < rank; ++i) {
|
||||
acc_mul *= shape[i];
|
||||
}
|
||||
T linear_remain = linear_index;
|
||||
SmallVector<T> multidim_index(rank);
|
||||
for (size_t i = 0; i < rank; ++i) {
|
||||
multidim_index[i] = linear_remain / acc_mul;
|
||||
linear_remain = linear_remain % acc_mul;
|
||||
if (i != (rank - 1)) {
|
||||
acc_mul = acc_mul / shape[i + 1];
|
||||
}
|
||||
}
|
||||
return multidim_index;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static T getLinearIndex(ArrayRef<T> multidim_index, ArrayRef<T> shape) {
|
||||
assert(multidim_index.size() == shape.size());
|
||||
// sizes {a, b, c, d} -> acc_mul {b*c*d, c*d, d, 1}
|
||||
size_t rank = shape.size();
|
||||
T acc_mul = 1;
|
||||
for (size_t i = 1; i < rank; ++i) {
|
||||
acc_mul *= shape[i];
|
||||
}
|
||||
T linear_index = 0;
|
||||
for (size_t i = 0; i < rank; ++i) {
|
||||
linear_index += multidim_index[i] * acc_mul;
|
||||
if (i != (rank - 1)) {
|
||||
acc_mul = acc_mul / shape[i + 1];
|
||||
}
|
||||
}
|
||||
return linear_index;
|
||||
}
|
||||
|
||||
static unsigned getElemsPerThread(const TritonGPUBlockedEncodingAttr &layout,
|
||||
ArrayRef<int64_t> shape) {
|
||||
unsigned elems = 1;
|
||||
size_t rank = shape.size();
|
||||
assert(rank == layout.getThreadsPerWarp().size());
|
||||
for (size_t d = 0; d < rank; ++d) {
|
||||
elems *=
|
||||
shape[d] / (layout.getThreadsPerWarp()[d] * layout.getWarpsPerCTA()[d]);
|
||||
}
|
||||
return elems;
|
||||
}
|
||||
|
||||
static Value createIndexAttrConstant(OpBuilder &builder, Location loc,
|
||||
Type resultType, int64_t value) {
|
||||
return builder.create<LLVM::ConstantOp>(
|
||||
loc, resultType, builder.getIntegerAttr(resultType, value));
|
||||
}
|
||||
|
||||
template <typename SourceOp>
|
||||
class ConvertTritonGPUOpToLLVMPattern
|
||||
: public ConvertOpToLLVMPattern<SourceOp> {
|
||||
public:
|
||||
using OpAdaptor = typename SourceOp::Adaptor;
|
||||
|
||||
explicit ConvertTritonGPUOpToLLVMPattern(LLVMTypeConverter &typeConverter,
|
||||
PatternBenefit benefit = 1)
|
||||
: ConvertOpToLLVMPattern<SourceOp>(typeConverter, benefit) {}
|
||||
|
||||
SmallVector<Value, 4>
|
||||
getElementsFromStruct(Location loc, Value llvmStruct, unsigned elems,
|
||||
ConversionPatternRewriter &rewriter) const {
|
||||
SmallVector<Value, 4> results(elems);
|
||||
for (unsigned i = 0; i < elems; ++i) {
|
||||
Type type =
|
||||
llvmStruct.getType().cast<LLVM::LLVMStructType>().getBody()[i];
|
||||
results[i] = rewriter.create<LLVM::ExtractValueOp>(
|
||||
loc, type, llvmStruct, rewriter.getI64ArrayAttr(i));
|
||||
}
|
||||
return results;
|
||||
}
|
||||
|
||||
Value getStructFromElements(Location loc, ValueRange resultVals,
|
||||
ConversionPatternRewriter &rewriter,
|
||||
Type structType) const {
|
||||
Value llvmStruct = rewriter.create<LLVM::UndefOp>(loc, structType);
|
||||
for (auto v : llvm::enumerate(resultVals)) {
|
||||
llvmStruct = rewriter.create<LLVM::InsertValueOp>(
|
||||
loc, structType, llvmStruct, v.value(),
|
||||
rewriter.getI64ArrayAttr(v.index()));
|
||||
}
|
||||
return llvmStruct;
|
||||
}
|
||||
|
||||
SmallVector<Value> delinearize(ConversionPatternRewriter &rewriter,
|
||||
Location loc, Value linear,
|
||||
ArrayRef<unsigned> shape,
|
||||
ArrayRef<unsigned> order) const {
|
||||
unsigned rank = shape.size();
|
||||
assert(rank == order.size());
|
||||
SmallVector<unsigned> reordered(rank);
|
||||
for (unsigned i = 0; i < rank; ++i) {
|
||||
reordered[i] = shape[order[i]];
|
||||
}
|
||||
return delinearize(rewriter, loc, linear, reordered);
|
||||
}
|
||||
|
||||
SmallVector<Value> delinearize(ConversionPatternRewriter &rewriter,
|
||||
Location loc, Value linear,
|
||||
ArrayRef<unsigned> shape) const {
|
||||
unsigned rank = shape.size();
|
||||
assert(rank > 0);
|
||||
SmallVector<Value> multiDim(rank);
|
||||
if (rank == 1) {
|
||||
multiDim[0] = linear;
|
||||
} else {
|
||||
Value remained = linear;
|
||||
for (auto &&en : llvm::enumerate(llvm::reverse(shape.drop_front()))) {
|
||||
Value dimSize = createIndexAttrConstant(
|
||||
rewriter, loc, this->getTypeConverter()->getIndexType(),
|
||||
en.value());
|
||||
multiDim[rank - 1 - en.index()] =
|
||||
rewriter.create<LLVM::URemOp>(loc, remained, dimSize);
|
||||
remained = rewriter.create<LLVM::UDivOp>(loc, remained, dimSize);
|
||||
}
|
||||
multiDim[0] = remained;
|
||||
}
|
||||
return multiDim;
|
||||
}
|
||||
|
||||
// Emit indices calculation within each ConversionPattern
|
||||
// TODO: [goostavz] Double confirm the redundant indices calculations will
|
||||
// be eliminated in the consequent MLIR/LLVM optimization
|
||||
SmallVector<SmallVector<Value>> emitIndicesForBlockedLayout(
|
||||
Location loc, ConversionPatternRewriter &b,
|
||||
const TritonGPUBlockedEncodingAttr &blocked_layout,
|
||||
ArrayRef<int64_t> shape) const {
|
||||
auto llvmIndexTy = this->getTypeConverter()->getIndexType();
|
||||
auto cast = b.create<UnrealizedConversionCastOp>(
|
||||
loc, TypeRange{llvmIndexTy},
|
||||
ValueRange{b.create<::mlir::gpu::ThreadIdOp>(
|
||||
loc, b.getIndexType(), ::mlir::gpu::Dimension::x)});
|
||||
Value threadId = cast.getResult(0);
|
||||
Value warpSize = createIndexAttrConstant(b, loc, llvmIndexTy, 32);
|
||||
Value laneId = b.create<LLVM::URemOp>(loc, threadId, warpSize);
|
||||
Value warpId = b.create<LLVM::UDivOp>(loc, threadId, warpSize);
|
||||
auto sizePerThread = blocked_layout.getSizePerThread();
|
||||
auto threadsPerWarp = blocked_layout.getThreadsPerWarp();
|
||||
auto warpsPerCTA = blocked_layout.getWarpsPerCTA();
|
||||
auto order = blocked_layout.getOrder();
|
||||
unsigned rank = shape.size();
|
||||
SmallVector<Value, 4> threadIds(rank);
|
||||
|
||||
// step 1, delinearize threadId to get the base index
|
||||
SmallVector<Value> multiDimWarpId =
|
||||
delinearize(b, loc, warpId, warpsPerCTA, order);
|
||||
SmallVector<Value> multiDimThreadId =
|
||||
delinearize(b, loc, laneId, threadsPerWarp, order);
|
||||
SmallVector<Value> multiDimBase(rank);
|
||||
for (unsigned k = 0; k < rank; ++k) {
|
||||
// multiDimBase[k] = (multiDimThreadId[k] + multiDimWarpId[k] *
|
||||
// threadsPerWarp[k]) *
|
||||
// sizePerThread[k];
|
||||
Value threadsPerWarpK =
|
||||
createIndexAttrConstant(b, loc, llvmIndexTy, threadsPerWarp[k]);
|
||||
Value sizePerThreadK =
|
||||
createIndexAttrConstant(b, loc, llvmIndexTy, sizePerThread[k]);
|
||||
multiDimBase[k] = b.create<LLVM::MulOp>(
|
||||
loc, sizePerThreadK,
|
||||
b.create<LLVM::AddOp>(
|
||||
loc, multiDimThreadId[k],
|
||||
b.create<LLVM::MulOp>(loc, multiDimWarpId[k], threadsPerWarpK)));
|
||||
}
|
||||
|
||||
// step 2, get offset of each element
|
||||
unsigned elemsPerThread = 1;
|
||||
SmallVector<SmallVector<unsigned>> offset(rank);
|
||||
SmallVector<unsigned> multiDimElemsPerThread(rank);
|
||||
for (unsigned k = 0; k < rank; ++k) {
|
||||
multiDimElemsPerThread[k] = shape[k] / threadsPerWarp[k] / warpsPerCTA[k];
|
||||
elemsPerThread *= multiDimElemsPerThread[k];
|
||||
for (unsigned blockOffset = 0;
|
||||
blockOffset <
|
||||
shape[k] / (sizePerThread[k] * threadsPerWarp[k] * warpsPerCTA[k]);
|
||||
++blockOffset) {
|
||||
for (unsigned warpOffset = 0; warpOffset < warpsPerCTA[k];
|
||||
++warpOffset) {
|
||||
for (unsigned threadOffset = 0; threadOffset < threadsPerWarp[k];
|
||||
++threadOffset) {
|
||||
for (unsigned elemOffset = 0; elemOffset < sizePerThread[k];
|
||||
++elemOffset) {
|
||||
offset[k].push_back(blockOffset * sizePerThread[k] *
|
||||
threadsPerWarp[k] * warpsPerCTA[k] +
|
||||
warpOffset * sizePerThread[k] *
|
||||
threadsPerWarp[k] +
|
||||
threadOffset * sizePerThread[k] + elemOffset);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// step 3, add offset to base, and reorder the sequence of indices,
|
||||
// to guarantee that elems in a same sizePerThread are adjacent in
|
||||
// order
|
||||
SmallVector<SmallVector<Value>> multiDimIdx(elemsPerThread);
|
||||
unsigned accumSizePerThread =
|
||||
std::accumulate(sizePerThread.begin(), sizePerThread.end(), 1,
|
||||
std::multiplies<unsigned>());
|
||||
SmallVector<unsigned> threadsPerDim(rank);
|
||||
for (unsigned k = 0; k < rank; ++k) {
|
||||
threadsPerDim[k] = shape[k] / sizePerThread[k];
|
||||
}
|
||||
for (unsigned n = 0; n < elemsPerThread; ++n) {
|
||||
unsigned linearNanoTileId = n / accumSizePerThread;
|
||||
unsigned linearElemsInNanoTileId = n % accumSizePerThread;
|
||||
SmallVector<unsigned> multiDimNanoTileId =
|
||||
getMultiDimIndex<unsigned>(linearNanoTileId, threadsPerDim);
|
||||
SmallVector<unsigned> multiElemsInNanoTileId =
|
||||
getMultiDimIndex<unsigned>(linearElemsInNanoTileId, sizePerThread);
|
||||
multiDimIdx[n].resize(rank);
|
||||
for (unsigned k = 0; k < rank; ++k) {
|
||||
unsigned reorderedMultiDimId =
|
||||
multiDimNanoTileId[k] *
|
||||
(sizePerThread[k] * threadsPerWarp[k] * warpsPerCTA[k]) +
|
||||
multiElemsInNanoTileId[k];
|
||||
multiDimIdx[n][k] = b.create<LLVM::AddOp>(
|
||||
loc, multiDimBase[k],
|
||||
createIndexAttrConstant(b, loc, llvmIndexTy,
|
||||
offset[k][reorderedMultiDimId]));
|
||||
}
|
||||
}
|
||||
|
||||
return multiDimIdx;
|
||||
}
|
||||
};
|
||||
|
||||
struct BroadcastOpConversion
|
||||
: public ConvertTritonGPUOpToLLVMPattern<triton::BroadcastOp> {
|
||||
using ConvertTritonGPUOpToLLVMPattern<
|
||||
triton::BroadcastOp>::ConvertTritonGPUOpToLLVMPattern;
|
||||
|
||||
// Following the order of indices in the legacy code, a broadcast of:
|
||||
// [s(0), s(1) ... s(k-1), 1, s(k+1), s(k+2) ... s(n-1)]
|
||||
// =>
|
||||
// [s(0), s(1) ... s(k-1), s(k), s(k+1), s(k+2) ... s(n-1)]
|
||||
//
|
||||
// logically maps to a broadcast within a thread's scope:
|
||||
// [cta(0)..cta(k-1), 1,cta(k+1)..cta(n-1),spt(0)..spt(k-1),
|
||||
// 1,spt(k+1)..spt(n-1)]
|
||||
// =>
|
||||
// [cta(0)..cta(k-1),cta(k),cta(k+1)..cta(n-1),spt(0)..spt(k-1),spt(k),spt(k+1)..spt(n-1)]
|
||||
//
|
||||
// regardless of the order of the layout
|
||||
//
|
||||
LogicalResult
|
||||
matchAndRewrite(triton::BroadcastOp op, OpAdaptor adaptor,
|
||||
ConversionPatternRewriter &rewriter) const override {
|
||||
Location loc = op->getLoc();
|
||||
Value src = adaptor.src();
|
||||
Value result = op.result();
|
||||
auto srcTy = op.src().getType().cast<RankedTensorType>();
|
||||
auto resultTy = result.getType().cast<RankedTensorType>();
|
||||
auto srcLayout =
|
||||
srcTy.getEncoding().dyn_cast<TritonGPUBlockedEncodingAttr>();
|
||||
auto resultLayout =
|
||||
resultTy.getEncoding().dyn_cast<TritonGPUBlockedEncodingAttr>();
|
||||
assert(srcLayout && (srcLayout == resultLayout) &&
|
||||
"Unexpected layout of BroadcastOp");
|
||||
auto srcShape = srcTy.getShape();
|
||||
auto resultShape = resultTy.getShape();
|
||||
unsigned rank = srcTy.getRank();
|
||||
// TODO: [goostavz] double confirm the op semantics with Phil
|
||||
assert(rank == resultTy.getRank());
|
||||
|
||||
SmallVector<int64_t, 4> srcLogicalShape(2 * rank);
|
||||
SmallVector<int64_t, 4> resultLogicalShape(2 * rank);
|
||||
SmallVector<unsigned, 2> broadcastDims;
|
||||
SmallVector<int64_t, 2> broadcastSizes;
|
||||
int64_t duplicates = 1;
|
||||
for (unsigned d = 0; d < rank; ++d) {
|
||||
int64_t numCtas = resultShape[d] / (resultLayout.getSizePerThread()[d] *
|
||||
resultLayout.getThreadsPerWarp()[d] *
|
||||
resultLayout.getWarpsPerCTA()[d]);
|
||||
if (srcShape[d] != resultShape[d]) {
|
||||
assert(srcShape[d] == 1);
|
||||
broadcastDims.push_back(d);
|
||||
broadcastSizes.push_back(resultShape[d]);
|
||||
srcLogicalShape[d] = 1;
|
||||
srcLogicalShape[d + rank] = 1;
|
||||
duplicates *= resultShape[d];
|
||||
} else {
|
||||
srcLogicalShape[d] = numCtas;
|
||||
srcLogicalShape[d + rank] = resultLayout.getSizePerThread()[d];
|
||||
}
|
||||
resultLogicalShape[d] = numCtas;
|
||||
resultLogicalShape[d + rank] = resultLayout.getSizePerThread()[d];
|
||||
}
|
||||
unsigned srcElems = getElemsPerThread(srcLayout, srcShape);
|
||||
auto elemTy = resultTy.getElementType();
|
||||
auto srcVals = getElementsFromStruct(loc, src, srcElems, rewriter);
|
||||
unsigned resultElems = getElemsPerThread(resultLayout, resultShape);
|
||||
SmallVector<Value> resultVals(resultElems);
|
||||
for (unsigned i = 0; i < srcElems; ++i) {
|
||||
auto srcMultiDim = getMultiDimIndex<int64_t>(i, srcLogicalShape);
|
||||
auto resultMultiDim = srcMultiDim;
|
||||
for (int64_t j = 0; j < duplicates; ++j) {
|
||||
auto bcastMultiDim = getMultiDimIndex<int64_t>(j, broadcastSizes);
|
||||
for (auto bcastDim : llvm::enumerate(broadcastDims)) {
|
||||
resultMultiDim[bcastDim.value()] = bcastMultiDim[bcastDim.index()];
|
||||
}
|
||||
auto resultLinearIndex =
|
||||
getLinearIndex<int64_t>(resultMultiDim, resultLogicalShape);
|
||||
resultVals[resultLinearIndex] = srcVals[i];
|
||||
}
|
||||
}
|
||||
auto llvmStructTy = getTypeConverter()->convertType(resultTy);
|
||||
Value resultStruct =
|
||||
getStructFromElements(loc, resultVals, rewriter, llvmStructTy);
|
||||
rewriter.replaceOp(op, {resultStruct});
|
||||
return success();
|
||||
}
|
||||
};
|
||||
|
||||
struct ViewOpConversion
|
||||
: public ConvertTritonGPUOpToLLVMPattern<triton::ViewOp> {
|
||||
using ConvertTritonGPUOpToLLVMPattern<
|
||||
triton::ViewOp>::ConvertTritonGPUOpToLLVMPattern;
|
||||
|
||||
LogicalResult
|
||||
matchAndRewrite(triton::ViewOp op, OpAdaptor adaptor,
|
||||
ConversionPatternRewriter &rewriter) const override {
|
||||
// We cannot directly
|
||||
// rewriter.replaceOp(op, adaptor.src());
|
||||
// due to MLIR's restrictions
|
||||
Location loc = op->getLoc();
|
||||
auto resultTy = op.getType().cast<RankedTensorType>();
|
||||
auto resultLayout =
|
||||
resultTy.getEncoding().dyn_cast<TritonGPUBlockedEncodingAttr>();
|
||||
auto resultShape = resultTy.getShape();
|
||||
unsigned elems = getElemsPerThread(resultLayout, resultShape);
|
||||
Type elemTy =
|
||||
this->getTypeConverter()->convertType(resultTy.getElementType());
|
||||
SmallVector<Type> types(elems, elemTy);
|
||||
Type structTy = LLVM::LLVMStructType::getLiteral(getContext(), types);
|
||||
auto vals = getElementsFromStruct(loc, adaptor.src(), elems, rewriter);
|
||||
Value view = getStructFromElements(loc, vals, rewriter, structTy);
|
||||
rewriter.replaceOp(op, view);
|
||||
return success();
|
||||
}
|
||||
};
|
||||
|
||||
struct MakeRangeOpConversion
|
||||
: public ConvertTritonGPUOpToLLVMPattern<triton::MakeRangeOp> {
|
||||
using ConvertTritonGPUOpToLLVMPattern<
|
||||
triton::MakeRangeOp>::ConvertTritonGPUOpToLLVMPattern;
|
||||
|
||||
LogicalResult
|
||||
matchAndRewrite(triton::MakeRangeOp op, OpAdaptor adaptor,
|
||||
ConversionPatternRewriter &rewriter) const override {
|
||||
Location loc = op->getLoc();
|
||||
auto rankedTy = op.result().getType().dyn_cast<RankedTensorType>();
|
||||
auto shape = rankedTy.getShape();
|
||||
auto blocked_layout =
|
||||
rankedTy.getEncoding().dyn_cast<TritonGPUBlockedEncodingAttr>();
|
||||
auto elemTy = rankedTy.getElementType();
|
||||
assert(elemTy.isInteger(32));
|
||||
Value start = createIndexAttrConstant(rewriter, loc, elemTy, op.start());
|
||||
auto idxs =
|
||||
emitIndicesForBlockedLayout(loc, rewriter, blocked_layout, shape);
|
||||
unsigned elems = idxs.size();
|
||||
SmallVector<Value> retVals(elems);
|
||||
for (auto multiDim : llvm::enumerate(idxs)) {
|
||||
assert(multiDim.value().size() == 1);
|
||||
retVals[multiDim.index()] =
|
||||
rewriter.create<LLVM::AddOp>(loc, multiDim.value()[0], start);
|
||||
}
|
||||
SmallVector<Type> types(elems, elemTy);
|
||||
Type structTy = LLVM::LLVMStructType::getLiteral(getContext(), types);
|
||||
Value result = getStructFromElements(loc, retVals, rewriter, structTy);
|
||||
rewriter.replaceOp(op, result);
|
||||
return success();
|
||||
}
|
||||
};
|
||||
|
||||
struct LoadOpConversion
|
||||
: public ConvertTritonGPUOpToLLVMPattern<triton::LoadOp> {
|
||||
using ConvertTritonGPUOpToLLVMPattern<
|
||||
triton::LoadOp>::ConvertTritonGPUOpToLLVMPattern;
|
||||
|
||||
LogicalResult
|
||||
matchAndRewrite(triton::LoadOp op, OpAdaptor adaptor,
|
||||
ConversionPatternRewriter &rewriter) const override {
|
||||
Location loc = op->getLoc();
|
||||
Value ptr = adaptor.ptr();
|
||||
Value mask = adaptor.mask();
|
||||
Value other = adaptor.other();
|
||||
auto resultTy = op.result().getType().cast<RankedTensorType>();
|
||||
auto blockedLayout =
|
||||
resultTy.getEncoding().dyn_cast<TritonGPUBlockedEncodingAttr>();
|
||||
auto shape = resultTy.getShape();
|
||||
|
||||
// TODO: Handle AxisInfo
|
||||
// vecWidth = std::min(nts, aln)
|
||||
// TODO: special processing for mma_first_row in legacy codes
|
||||
assert(blockedLayout && "LoadOp only accepts blocked_layout");
|
||||
unsigned vecWidth =
|
||||
blockedLayout.getSizePerThread()[blockedLayout.getOrder()[0]];
|
||||
|
||||
auto elemTy = resultTy.getElementType();
|
||||
unsigned numElems = getElemsPerThread(blockedLayout, shape);
|
||||
auto ptrVals = getElementsFromStruct(loc, ptr, numElems, rewriter);
|
||||
auto maskVals = getElementsFromStruct(loc, mask, numElems, rewriter);
|
||||
auto otherVals = getElementsFromStruct(loc, other, numElems, rewriter);
|
||||
unsigned nbits = elemTy.isa<FloatType>()
|
||||
? elemTy.cast<FloatType>().getWidth()
|
||||
: elemTy.cast<IntegerType>().getWidth();
|
||||
// unsigned dtsize = nbits / 8;
|
||||
int max_word_width = std::max<int>(32, nbits);
|
||||
int tot_width = nbits * vecWidth;
|
||||
int width = std::min(tot_width, max_word_width);
|
||||
int n_words = std::max(1, tot_width / width);
|
||||
// TODO: currently disable until supported in `store`
|
||||
bool has_l2_evict_policy = false;
|
||||
|
||||
// TODO: (goostavz) handle when other is const but not splat, which
|
||||
// should be rarely seen
|
||||
bool otherIsSplatConstInt = false;
|
||||
DenseElementsAttr constAttr;
|
||||
int64_t splatVal = 0;
|
||||
if (elemTy.isa<IntegerType>() &&
|
||||
matchPattern(op.other(), m_Constant(&constAttr)) &&
|
||||
constAttr.isSplat()) {
|
||||
otherIsSplatConstInt = true;
|
||||
splatVal = constAttr.getSplatValue<APInt>().getSExtValue();
|
||||
}
|
||||
|
||||
SmallVector<Value> loadedVals;
|
||||
for (size_t i = 0; i < numElems; i += vecWidth) {
|
||||
Value ptr = ptrVals[i];
|
||||
// TODO: Handle the optimization if ptr is from GEP and the idx is
|
||||
// constant
|
||||
// This should be a canonicalization pattern in LLVM Dialect
|
||||
unsigned in_off = 0;
|
||||
Value pred = maskVals[i];
|
||||
|
||||
// ---
|
||||
// create inline asm string
|
||||
// ---
|
||||
// TODO: (Superjomn) refactor with AsmInstr abstraction
|
||||
std::ostringstream asmOss;
|
||||
asmOss << "@$" << n_words; // predicate
|
||||
asmOss << " ld";
|
||||
if (op.isVolatile()) {
|
||||
asmOss << ".volatile";
|
||||
}
|
||||
asmOss << ".global";
|
||||
if (op.cache() == triton::CacheModifier::CA)
|
||||
asmOss << ".ca";
|
||||
if (op.cache() == triton::CacheModifier::CG)
|
||||
asmOss << ".cg";
|
||||
if (op.evict() == triton::EvictionPolicy::EVICT_FIRST)
|
||||
asmOss << ".L1::evict_first";
|
||||
if (op.evict() == triton::EvictionPolicy::EVICT_LAST)
|
||||
asmOss << ".L1::evict_last";
|
||||
if (has_l2_evict_policy)
|
||||
asmOss << ".L2::cache_hint";
|
||||
if (n_words > 1)
|
||||
asmOss << ".v" << n_words; // vector width
|
||||
asmOss << ".b" << width; // word size
|
||||
asmOss << " {";
|
||||
for (int i = 0; i < n_words; i++) { // return values
|
||||
if (i > 0)
|
||||
asmOss << ",";
|
||||
asmOss << "$" << i;
|
||||
}
|
||||
asmOss << "}";
|
||||
asmOss << ", [ $" << n_words + 1; // load
|
||||
asmOss << " + " << in_off << "]"; // constant offset
|
||||
if (has_l2_evict_policy)
|
||||
asmOss << ", $" << n_words + 2;
|
||||
asmOss << ";";
|
||||
SmallVector<Value> others;
|
||||
for (size_t ii = 0; ii < n_words; ii++) {
|
||||
size_t size = width / nbits;
|
||||
auto vecTy = LLVM::getFixedVectorType(elemTy, size);
|
||||
Value v = rewriter.create<LLVM::UndefOp>(loc, vecTy);
|
||||
for (size_t s = 0; s < size; s++) {
|
||||
Value falseVal = otherVals[i + ii * size + s];
|
||||
Value sVal = createIndexAttrConstant(
|
||||
rewriter, loc, this->getTypeConverter()->getIndexType(), s);
|
||||
v = rewriter.create<LLVM::InsertElementOp>(loc, vecTy, v, falseVal,
|
||||
sVal);
|
||||
}
|
||||
v = rewriter.create<LLVM::BitcastOp>(
|
||||
loc, IntegerType::get(getContext(), width), v);
|
||||
asmOss << "\n ";
|
||||
asmOss << "@!$" << n_words << " mov.u" << width;
|
||||
asmOss << " $" << ii << ", ";
|
||||
std::ios_base::fmtflags flags(asmOss.flags());
|
||||
if (otherIsSplatConstInt)
|
||||
asmOss << "0x" << std::hex << splatVal;
|
||||
else {
|
||||
asmOss << "$" << n_words + has_l2_evict_policy + 2 + ii;
|
||||
others.push_back(v);
|
||||
}
|
||||
asmOss.flags(flags);
|
||||
asmOss << ";";
|
||||
}
|
||||
// ---
|
||||
// create inline ASM signature
|
||||
// ---
|
||||
SmallVector<Type> retTys(n_words, IntegerType::get(getContext(), width));
|
||||
Type retTy = retTys.size() > 1
|
||||
? LLVM::LLVMStructType::getLiteral(getContext(), retTys)
|
||||
: retTys[0];
|
||||
// ---
|
||||
// create inline ASM constraints
|
||||
// ---
|
||||
std::string asmCstrt;
|
||||
for (int ii = 0; ii < n_words; ii++) {
|
||||
if (ii > 0)
|
||||
asmCstrt += ",";
|
||||
asmCstrt += (width == 64) ? "=l" : ((width == 32) ? "=r" : "=c");
|
||||
}
|
||||
asmCstrt += ",b,l";
|
||||
for (size_t ii = 0; ii < others.size(); ii++) {
|
||||
asmCstrt += ",";
|
||||
asmCstrt += (width == 64) ? "l" : ((width == 32) ? "r" : "c");
|
||||
}
|
||||
if (has_l2_evict_policy) {
|
||||
asmCstrt += ",l";
|
||||
}
|
||||
// ---
|
||||
// finally call inline ASM
|
||||
// ---
|
||||
SmallVector<Value> args = {pred, ptr};
|
||||
auto asmDialectAttr = LLVM::AsmDialectAttr::get(rewriter.getContext(),
|
||||
LLVM::AsmDialect::AD_ATT);
|
||||
auto inlineAsmOp = rewriter.create<LLVM::InlineAsmOp>(
|
||||
loc, retTy, /*operands=*/args, /*asm_string=*/asmOss.str(),
|
||||
/*constraints=*/asmCstrt, /*has_side_effects=*/true,
|
||||
/*is_align_stack=*/false, /*asm_dialect=*/asmDialectAttr,
|
||||
/*operand_attrs=*/ArrayAttr());
|
||||
Value ret = inlineAsmOp.getResult(0);
|
||||
// ---
|
||||
// extract and store return values
|
||||
// ---
|
||||
SmallVector<Value> rets;
|
||||
for (unsigned int ii = 0; ii < n_words; ii++) {
|
||||
Value curr = nullptr;
|
||||
if (retTy.isa<LLVM::LLVMStructType>()) {
|
||||
curr = rewriter.create<LLVM::ExtractValueOp>(
|
||||
loc, IntegerType::get(getContext(), width), ret,
|
||||
rewriter.getI64ArrayAttr(ii));
|
||||
} else {
|
||||
curr = ret;
|
||||
}
|
||||
curr = rewriter.create<LLVM::BitcastOp>(
|
||||
loc, LLVM::getFixedVectorType(elemTy, width / nbits), curr);
|
||||
rets.push_back(curr);
|
||||
}
|
||||
int tmp = (width / nbits);
|
||||
for (size_t ii = 0; ii < vecWidth; ii++) {
|
||||
Value vecIdx = createIndexAttrConstant(
|
||||
rewriter, loc, this->getTypeConverter()->getIndexType(), ii % tmp);
|
||||
Value loaded = rewriter.create<LLVM::ExtractElementOp>(
|
||||
loc, elemTy, rets[ii / tmp], vecIdx);
|
||||
loadedVals.push_back(loaded);
|
||||
}
|
||||
}
|
||||
Type llvmResultStructTy = getTypeConverter()->convertType(resultTy);
|
||||
Value resultStruct =
|
||||
getStructFromElements(loc, loadedVals, rewriter, llvmResultStructTy);
|
||||
rewriter.replaceOp(op, {resultStruct});
|
||||
return success();
|
||||
}
|
||||
};
|
||||
|
||||
class TritonGPUToLLVMTypeConverter : public LLVMTypeConverter {
|
||||
public:
|
||||
using TypeConverter::convertType;
|
||||
|
||||
TritonGPUToLLVMTypeConverter(MLIRContext *ctx, LowerToLLVMOptions &option,
|
||||
const DataLayoutAnalysis *analysis = nullptr)
|
||||
: LLVMTypeConverter(ctx, option, analysis) {
|
||||
addConversion([&](triton::PointerType type) -> llvm::Optional<Type> {
|
||||
return convertTritonPointerType(type);
|
||||
});
|
||||
addConversion([&](RankedTensorType type) -> llvm::Optional<Type> {
|
||||
return convertTritonTensorType(type);
|
||||
});
|
||||
}
|
||||
|
||||
Type convertTritonPointerType(triton::PointerType type) {
|
||||
return LLVM::LLVMPointerType::get(type.getPointeeType(),
|
||||
type.getAddressSpace());
|
||||
}
|
||||
|
||||
llvm::Optional<Type> convertTritonTensorType(RankedTensorType type) {
|
||||
Attribute layout = type.getEncoding();
|
||||
if (auto blocked_layout = layout.dyn_cast<TritonGPUBlockedEncodingAttr>()) {
|
||||
unsigned numElementsPerThread =
|
||||
getElemsPerThread(blocked_layout, type.getShape());
|
||||
SmallVector<Type, 4> types(numElementsPerThread,
|
||||
convertType(type.getElementType()));
|
||||
return LLVM::LLVMStructType::getLiteral(&getContext(), types);
|
||||
} else if (auto mma_layout = layout.dyn_cast<TritonGPUMmaEncodingAttr>()) {
|
||||
// TODO: Not implemented
|
||||
return llvm::None;
|
||||
} else if (auto shared_layout =
|
||||
layout.dyn_cast<TritonGPUSharedEncodingAttr>()) {
|
||||
// TODO: Not implemented
|
||||
return llvm::None;
|
||||
}
|
||||
return llvm::None;
|
||||
}
|
||||
};
|
||||
|
||||
void populateTritonToLLVMPatterns(mlir::LLVMTypeConverter &typeConverter,
|
||||
RewritePatternSet &patterns, int numWarps) {
|
||||
patterns.add<::FuncOpConversion>(typeConverter, numWarps);
|
||||
patterns.add<::ReturnOpConversion>(typeConverter);
|
||||
patterns.add<BroadcastOpConversion>(typeConverter);
|
||||
patterns.add<FuncOpConversion>(typeConverter, numWarps);
|
||||
patterns.add<LoadOpConversion>(typeConverter);
|
||||
patterns.add<MakeRangeOpConversion>(typeConverter);
|
||||
patterns.add<ReturnOpConversion>(typeConverter);
|
||||
patterns.add<ViewOpConversion>(typeConverter);
|
||||
}
|
||||
|
||||
class ConvertTritonGPUToLLVM
|
||||
@@ -225,29 +844,41 @@ public:
|
||||
MLIRContext *context = &getContext();
|
||||
ModuleOp mod = getOperation();
|
||||
|
||||
LLVMTypeConverter typeConverter(context);
|
||||
mlir::LowerToLLVMOptions option(context);
|
||||
// TODO: need confirm
|
||||
option.overrideIndexBitwidth(32);
|
||||
TritonGPUToLLVMTypeConverter typeConverter(context, option);
|
||||
TritonLLVMConversionTarget target(*context, typeConverter);
|
||||
|
||||
RewritePatternSet patterns(context);
|
||||
// TODO: (goostavz) Temporarily disable this, since the lowering of
|
||||
// arithmetic ops in tensor format is not complete yet.
|
||||
// Add arith's patterns to help convert scalar expression to LLVM.
|
||||
mlir::arith::populateArithmeticToLLVMConversionPatterns(typeConverter,
|
||||
patterns);
|
||||
// mlir::arith::populateArithmeticToLLVMConversionPatterns(typeConverter,
|
||||
// patterns);
|
||||
|
||||
int numWarps = extractNumWarps(mod);
|
||||
|
||||
populateTritonToLLVMPatterns(typeConverter, patterns, numWarps);
|
||||
mlir::populateGpuToNVVMConversionPatterns(typeConverter, patterns);
|
||||
|
||||
if (failed(applyPartialConversion(mod, target, std::move(patterns))))
|
||||
return signalPassFailure();
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
namespace mlir {
|
||||
|
||||
TritonLLVMConversionTarget::TritonLLVMConversionTarget(
|
||||
MLIRContext &ctx, mlir::LLVMTypeConverter &typeConverter)
|
||||
: ConversionTarget(ctx), typeConverter(typeConverter) {
|
||||
addLegalDialect<LLVM::LLVMDialect>();
|
||||
addLegalDialect<NVVM::NVVMDialect>();
|
||||
// addIllegalDialect<triton::TritonDialect>();
|
||||
addIllegalDialect<mlir::gpu::GPUDialect>();
|
||||
addLegalOp<mlir::UnrealizedConversionCastOp>();
|
||||
}
|
||||
|
||||
namespace triton {
|
||||
|
Reference in New Issue
Block a user