[BACKEND] Codegen bringup, index calculation of blocked_layout & support of LoadOp, BroadcastOp, ViewOp & MakeRangeOp (#38)
Co-authored-by: gzhu <gzhu@nvidia.com>
This commit is contained in:
@@ -3,7 +3,7 @@
|
||||
|
||||
module attributes {"triton_gpu.num-warps" = 4 : i32} {
|
||||
|
||||
// CHECK: llvm.func @test_empty_kernel(%arg0: i64, %arg1: !llvm.ptr<f16, 1>)
|
||||
// CHECK: llvm.func @test_empty_kernel(%arg0: i32, %arg1: !llvm.ptr<f16, 1>)
|
||||
// Here the 128 comes from the 4 in module attribute multiples 32
|
||||
// CHECK: attributes {nvvm.maxntid = 128 : i32} {{.*}}
|
||||
func @test_empty_kernel(%lb : index, %A : !tt.ptr<f16>) {
|
||||
@@ -13,3 +13,128 @@ func @test_empty_kernel(%lb : index, %A : !tt.ptr<f16>) {
|
||||
}
|
||||
|
||||
} // end module
|
||||
|
||||
// -----
|
||||
|
||||
#blocked0 = #triton_gpu.blocked<{sizePerThread = [1], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>
|
||||
module attributes {"triton_gpu.num-warps" = 4 : i32} {
|
||||
// CHECK-LABEL: basic_load
|
||||
func @basic_load(%a_ptr_init : tensor<256x!tt.ptr<f32>, #blocked0>, %cst : tensor<256xi1, #blocked0>, %cst_0 : tensor<256xf32, #blocked0>) {
|
||||
// CHECK: llvm.inline_asm
|
||||
// CHECK: llvm.inline_asm
|
||||
%1 = tt.load %a_ptr_init, %cst, %cst_0 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<256xf32, #blocked0>
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
#blocked0 = #triton_gpu.blocked<{sizePerThread = [4], threadsPerWarp = [8], warpsPerCTA = [4], order = [0]}>
|
||||
module attributes {"triton_gpu.num-warps" = 4 : i32} {
|
||||
// CHECK-LABEL: vectorized_load
|
||||
func @vectorized_load(%a_ptr_init : tensor<256x!tt.ptr<f32>, #blocked0>, %cst : tensor<256xi1, #blocked0>, %cst_0 : tensor<256xf32, #blocked0>) {
|
||||
// CHECK: llvm.inline_asm
|
||||
// CHECK-SAME: ld.global.v4.b32
|
||||
// CHECK: llvm.inline_asm
|
||||
// CHECK-SAME: ld.global.v4.b32
|
||||
%1 = tt.load %a_ptr_init, %cst, %cst_0 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<256xf32, #blocked0>
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
#blocked0 = #triton_gpu.blocked<{sizePerThread = [4], threadsPerWarp = [8], warpsPerCTA = [4], order = [0]}>
|
||||
module attributes {"triton_gpu.num-warps" = 4 : i32} {
|
||||
// CHECK-LABEL: vectorized_load_f16
|
||||
func @vectorized_load_f16(%a_ptr_init : tensor<256x!tt.ptr<f16>, #blocked0>, %cst : tensor<256xi1, #blocked0>, %cst_0 : tensor<256xf16, #blocked0>) {
|
||||
// CHECK: llvm.inline_asm
|
||||
// CHECK-SAME: ld.global.v2.b32
|
||||
// CHECK: llvm.inline_asm
|
||||
// CHECK-SAME: ld.global.v2.b32
|
||||
%1 = tt.load %a_ptr_init, %cst, %cst_0 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<256xf16, #blocked0>
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// TODO: Pending on the support of isSplat constant
|
||||
#blocked0 = #triton_gpu.blocked<{sizePerThread = [1], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>
|
||||
module attributes {"triton_gpu.num-warps" = 4 : i32} {
|
||||
// CHECK-LABEL: masked_load_const_other
|
||||
func @masked_load_const_other(%a_ptr_init : tensor<256x!tt.ptr<f32>, #blocked0>, %cst : tensor<256xi1, #blocked0>) {
|
||||
%cst_0 = arith.constant dense<0.000000e+00> : tensor<256xf32, #blocked0>
|
||||
%1 = tt.load %a_ptr_init, %cst, %cst_0 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<256xf32, #blocked0>
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: Add a testcase to verify the optimization when ptr of the LoadOp
|
||||
// is from a GEP with const idx
|
||||
|
||||
// -----
|
||||
|
||||
#blocked0 = #triton_gpu.blocked<{sizePerThread = [1], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>
|
||||
#blocked2 = #triton_gpu.blocked<{sizePerThread = [1, 1], threadsPerWarp = [32, 1], warpsPerCTA = [4, 1], order = [0, 1]}>
|
||||
module attributes {"triton_gpu.num-warps" = 4 : i32} {
|
||||
// CHECK-LABEL: basic_view_broadcast
|
||||
func @basic_view_broadcast(%arg : tensor<256xf32,#blocked0>) {
|
||||
// CHECK: llvm.mlir.undef
|
||||
// CHECK: %[[T0:.*]] = llvm.extractvalue
|
||||
// CHECK: %[[T1:.*]] = llvm.extractvalue
|
||||
%0 = tt.view %arg : (tensor<256xf32, #blocked0>) -> tensor<256x1xf32,#blocked2>
|
||||
// CHECK: llvm.mlir.undef
|
||||
// CHECK: llvm.insertvalue %[[T0]]
|
||||
// CHECK: llvm.insertvalue %[[T0]]
|
||||
// CHECK: llvm.insertvalue %[[T0]]
|
||||
// CHECK: llvm.insertvalue %[[T0]]
|
||||
// CHECK: llvm.insertvalue %[[T1]]
|
||||
// CHECK: llvm.insertvalue %[[T1]]
|
||||
// CHECK: llvm.insertvalue %[[T1]]
|
||||
// CHECK: llvm.insertvalue %[[T1]]
|
||||
%1 = tt.broadcast %0 : (tensor<256x1xf32,#blocked2>) -> tensor<256x4xf32, #blocked2>
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
#blocked0 = #triton_gpu.blocked<{sizePerThread = [1], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>
|
||||
module attributes {"triton_gpu.num-warps" = 4 : i32} {
|
||||
// CHECK-LABEL: basic_make_range
|
||||
func @basic_make_range() {
|
||||
// CHECK: nvvm.read.ptx.sreg.tid.x
|
||||
// CHECK: llvm.mlir.undef
|
||||
// CHECK: llvm.insertvalue
|
||||
// CHECK: llvm.insertvalue
|
||||
%0 = tt.make_range {end = 256 : i32, start = 0 : i32} : tensor<256xi32, #blocked0>
|
||||
return
|
||||
}
|
||||
}
|
||||
|
||||
// #blocked0 = #triton_gpu.blocked<{sizePerThread = [1], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>
|
||||
// #blocked1 = #triton_gpu.blocked<{sizePerThread = [1, 1], threadsPerWarp = [1, 32], warpsPerCTA = [1, 4], order = [0, 1]}>
|
||||
// #blocked2 = #triton_gpu.blocked<{sizePerThread = [1, 1], threadsPerWarp = [32, 1], warpsPerCTA = [4, 1], order = [0, 1]}>
|
||||
// module attributes {"triton_gpu.num-warps" = 4 : i32} {
|
||||
// func @debut_kernel(%lb : index, %A : !tt.ptr<f32>, %B : !tt.ptr<f32>, %C : !tt.ptr<f32>) {
|
||||
// %cst = arith.constant dense<true> : tensor<256xi1, #blocked0>
|
||||
// %cst_0 = arith.constant dense<0.000000e+00> : tensor<256xf32, #blocked0>
|
||||
// %cst_1 = arith.constant dense<true> : tensor<1024x256xi1, #blocked1>
|
||||
// %cst_2 = arith.constant dense<true> : tensor<256x2048xi1, #blocked2>
|
||||
// %a_ptr_init = tt.splat %A : (!tt.ptr<f32>) -> tensor<256x!tt.ptr<f32>, #blocked0>
|
||||
// %1 = tt.load %a_ptr_init, %cst, %cst_0 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<256xf32, #blocked0>
|
||||
// %4 = tt.view %1 : (tensor<256xf32, #blocked0>) -> tensor<1x256xf32,#blocked1>
|
||||
// %5 = tt.broadcast %4 : (tensor<1x256xf32,#blocked1>) -> tensor<1024x256xf32, #blocked1>
|
||||
// %6 = tt.view %1 : (tensor<256xf32, #blocked0>) -> tensor<256x1xf32,#blocked2>
|
||||
// %7 = tt.broadcast %6 : (tensor<256x1xf32,#blocked2>) -> tensor<256x2048xf32, #blocked2>
|
||||
// %b_ptr_init = tt.splat %A : (!tt.ptr<f32>) -> tensor<1024x256x!tt.ptr<f32>, #blocked1>
|
||||
// %c_ptr_init = tt.splat %A : (!tt.ptr<f32>) -> tensor<256x2048x!tt.ptr<f32>, #blocked2>
|
||||
// tt.store %b_ptr_init, %5, %cst_1, : tensor<1024x256xf32, #blocked1>
|
||||
// tt.store %c_ptr_init, %7, %cst_2, : tensor<256x2048xf32, #blocked2>
|
||||
// return
|
||||
// }
|
||||
// }
|
||||
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user