[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2021-07-31 05:27:59 +00:00
parent a86020efbc
commit 9e4ac7e794
21 changed files with 94 additions and 94 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 24 KiB

After

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 15 KiB

After

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 39 KiB

After

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 24 KiB

After

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 55 KiB

After

Width:  |  Height:  |  Size: 56 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 31 KiB

After

Width:  |  Height:  |  Size: 32 KiB

View File

@@ -33,12 +33,12 @@ You can install the Python package from source by running the following commands
.. code-block:: bash
git clone https://github.com/ptillet/triton.git;
git clone https://github.com/openai/triton.git;
cd triton/python;
pip install cmake; # build time dependency
pip install -e .
Note that, if llvm-11 is not present on your system, the setup.py script will download LLVM static libraries on the web and link against that.
Note that, if llvm-11 is not present on your system, the setup.py script will download the official LLVM11 static libraries link against that.
You can then test your installation by running the unit tests:

View File

@@ -216,13 +216,13 @@ We can now run the decorated function above. Pass `print_data=True` to see the p
vector-add-performance:
size Triton Torch
0 4096.0 8.000000 9.600000
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 76.800002 76.800002
3 32768.0 63.999998 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 384.000001 384.000001
6 262144.0 341.333321 384.000001
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 722.823517
@@ -230,7 +230,7 @@ We can now run the decorated function above. Pass `print_data=True` to see the p
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
13 33554432.0 843.811163 843.811163
14 67108864.0 848.362445 848.362445
14 67108864.0 849.278610 848.362445
15 134217728.0 851.577704 850.656574
@@ -239,7 +239,7 @@ We can now run the decorated function above. Pass `print_data=True` to see the p
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 0 minutes 10.964 seconds)
**Total running time of the script:** ( 0 minutes 12.665 seconds)
.. _sphx_glr_download_getting-started_tutorials_01-vector-add.py:

View File

@@ -261,17 +261,17 @@ We will then compare its performance against (1) :code:`torch.softmax` and (2) t
softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 273.066674
0 256.0 512.000001 512.000001 273.066674
1 384.0 585.142862 585.142862 261.446801
2 512.0 630.153853 585.142849 264.258068
3 640.0 682.666684 640.000002 265.974036
2 512.0 630.153853 606.814814 264.258068
3 640.0 682.666684 640.000002 269.473696
4 768.0 702.171410 664.216187 273.066663
.. ... ... ... ...
93 12160.0 812.359066 405.755985 329.204728
93 12160.0 812.359066 406.179533 329.483481
94 12288.0 812.429770 415.661740 329.602681
95 12416.0 810.840807 411.722274 329.173158
96 12544.0 810.925276 412.971190 329.292871
97 12672.0 811.007961 412.097543 329.142870
97 12672.0 811.007961 412.516771 329.142870
[98 rows x 4 columns]
@@ -290,7 +290,7 @@ In the above plot, we can see that:
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 1 minutes 8.185 seconds)
**Total running time of the script:** ( 1 minutes 8.252 seconds)
.. _sphx_glr_download_getting-started_tutorials_02-fused-softmax.py:

View File

@@ -371,37 +371,37 @@ We can now compare the performance of our kernel against that of cuBLAS. Here we
matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 128.0 0.455111 ... 0.512000 0.512000
1 256.0 2.730667 ... 3.276800 3.276800
2 384.0 7.372800 ... 8.507077 8.507077
3 512.0 14.563555 ... 16.384000 15.420235
1 256.0 2.730667 ... 3.276800 2.978909
2 384.0 7.372800 ... 7.899428 7.899428
3 512.0 14.563555 ... 15.420235 15.420235
4 640.0 22.260869 ... 24.380953 24.380953
5 768.0 32.768000 ... 34.028308 34.028308
6 896.0 37.971025 ... 39.025776 39.025776
6 896.0 39.025776 ... 39.025776 39.025776
7 1024.0 49.932191 ... 52.428801 52.428801
8 1152.0 44.566925 ... 46.656000 45.938215
8 1152.0 44.566925 ... 45.938215 45.938215
9 1280.0 51.200001 ... 56.109587 56.109587
10 1408.0 64.138541 ... 65.684049 58.601554
11 1536.0 78.643199 ... 75.296679 75.296679
12 1664.0 62.929456 ... 61.636381 61.636381
13 1792.0 72.983276 ... 68.953520 68.533074
14 1920.0 69.120002 ... 69.120002 69.467336
15 2048.0 73.584279 ... 75.573044 75.234154
16 2176.0 83.155572 ... 79.855747 79.855747
17 2304.0 68.251065 ... 72.607513 72.828879
18 2432.0 71.305746 ... 80.963875 80.963875
19 2560.0 77.649287 ... 76.740048 75.155963
20 2688.0 83.552988 ... 81.053536 83.552988
21 2816.0 79.154642 ... 78.726003 78.161663
22 2944.0 81.967162 ... 78.605729 79.737653
23 3072.0 79.415291 ... 81.825298 83.391907
24 3200.0 84.210524 ... 89.385477 85.333333
25 3328.0 83.905938 ... 81.346098 81.808290
26 3456.0 81.108217 ... 81.026701 85.133652
27 3584.0 87.381330 ... 91.750399 85.064084
28 3712.0 84.159518 ... 85.309435 88.326564
29 3840.0 84.550462 ... 87.217666 87.493673
30 3968.0 92.442373 ... 84.680037 83.692683
31 4096.0 93.662059 ... 91.867031 91.616198
10 1408.0 64.138541 ... 65.684049 58.621246
11 1536.0 79.526831 ... 76.106321 75.296679
12 1664.0 63.372618 ... 61.636381 62.061463
13 1792.0 72.983276 ... 69.379162 68.533074
14 1920.0 69.467336 ... 68.776119 69.120002
15 2048.0 73.908442 ... 75.573044 74.898285
16 2176.0 83.155572 ... 80.494588 79.855747
17 2304.0 68.446623 ... 73.051599 72.387489
18 2432.0 71.125224 ... 80.269900 79.139336
19 2560.0 77.833728 ... 76.740048 74.812787
20 2688.0 83.737433 ... 80.196737 82.463163
21 2816.0 83.552120 ... 78.442822 77.882512
22 2944.0 82.102191 ... 81.034195 78.979452
23 3072.0 80.202695 ... 84.010539 79.750851
24 3200.0 84.432717 ... 89.012517 86.720870
25 3328.0 79.114032 ... 78.851363 81.071278
26 3456.0 81.518272 ... 87.252780 82.773682
27 3584.0 84.905939 ... 95.654673 95.451583
28 3712.0 84.088676 ... 82.902362 84.159518
29 3840.0 83.655065 ... 84.036474 85.267542
30 3968.0 92.935215 ... 84.797731 83.807647
31 4096.0 93.336389 ... 91.616198 91.118618
[32 rows x 5 columns]
@@ -411,7 +411,7 @@ We can now compare the performance of our kernel against that of cuBLAS. Here we
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 2 minutes 12.186 seconds)
**Total running time of the script:** ( 2 minutes 15.188 seconds)
.. _sphx_glr_download_getting-started_tutorials_03-matrix-multiplication.py:

View File

@@ -5,12 +5,12 @@
Computation times
=================
**03:31.335** total execution time for **getting-started_tutorials** files:
**03:36.105** total execution time for **getting-started_tutorials** files:
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_03-matrix-multiplication.py` (``03-matrix-multiplication.py``) | 02:12.186 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_03-matrix-multiplication.py` (``03-matrix-multiplication.py``) | 02:15.188 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_02-fused-softmax.py` (``02-fused-softmax.py``) | 01:08.185 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_02-fused-softmax.py` (``02-fused-softmax.py``) | 01:08.252 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_getting-started_tutorials_01-vector-add.py` (``01-vector-add.py``) | 00:10.964 | 0.0 MB |
| :ref:`sphx_glr_getting-started_tutorials_01-vector-add.py` (``01-vector-add.py``) | 00:12.665 | 0.0 MB |
+---------------------------------------------------------------------------------------------------------+-----------+--------+

View File

@@ -1,7 +1,7 @@
Welcome to Triton's documentation!
==================================
Triton is an language and compiler for parallel programming. It aims to provide a Python-based programming environment for productively writing custom DNN compute kernels capable of running at maximal throughput on modern GPU hardware.
Triton is a language and compiler for parallel programming. It aims to provide a Python-based programming environment for productively writing custom DNN compute kernels capable of running at maximal throughput on modern GPU hardware.
Getting Started
---------------

View File

@@ -200,13 +200,13 @@
<div class="section" id="python-package">
<h3>Python Package<a class="headerlink" href="#python-package" title="Permalink to this headline"></a></h3>
<p>You can install the Python package from source by running the following commands:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>git clone https://github.com/ptillet/triton.git<span class="p">;</span>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>git clone https://github.com/openai/triton.git<span class="p">;</span>
<span class="nb">cd</span> triton/python<span class="p">;</span>
pip install cmake<span class="p">;</span> <span class="c1"># build time dependency</span>
pip install -e .
</pre></div>
</div>
<p>Note that, if llvm-11 is not present on your system, the setup.py script will download LLVM static libraries on the web and link against that.</p>
<p>Note that, if llvm-11 is not present on your system, the setup.py script will download the official LLVM11 static libraries link against that.</p>
<p>You can then test your installation by running the unit tests:</p>
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>pytest -vs .
</pre></div>

View File

@@ -305,13 +305,13 @@ for different problem sizes.</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>vector-add-performance:
size Triton Torch
0 4096.0 8.000000 9.600000
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 76.800002 76.800002
3 32768.0 63.999998 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 384.000001 384.000001
6 262144.0 341.333321 384.000001
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 722.823517
@@ -319,11 +319,11 @@ for different problem sizes.</p>
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
13 33554432.0 843.811163 843.811163
14 67108864.0 848.362445 848.362445
14 67108864.0 849.278610 848.362445
15 134217728.0 851.577704 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 10.964 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 12.665 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -346,17 +346,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 273.066674
0 256.0 512.000001 512.000001 273.066674
1 384.0 585.142862 585.142862 261.446801
2 512.0 630.153853 585.142849 264.258068
3 640.0 682.666684 640.000002 265.974036
2 512.0 630.153853 606.814814 264.258068
3 640.0 682.666684 640.000002 269.473696
4 768.0 702.171410 664.216187 273.066663
.. ... ... ... ...
93 12160.0 812.359066 405.755985 329.204728
93 12160.0 812.359066 406.179533 329.483481
94 12288.0 812.429770 415.661740 329.602681
95 12416.0 810.840807 411.722274 329.173158
96 12544.0 810.925276 412.971190 329.292871
97 12672.0 811.007961 412.097543 329.142870
97 12672.0 811.007961 412.516771 329.142870
[98 rows x 4 columns]
</pre></div>
@@ -370,7 +370,7 @@ This means that when temporary data is too large to fit entirely in the GPU
Note that our Triton kernel is not only faster than PyTorchs CUDA kernel, it is also <strong>easier to read, understand and maintain</strong>.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 8.185 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 8.252 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -476,42 +476,42 @@ tensor(True, device=&#39;cuda:0&#39;)
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 128.0 0.455111 ... 0.512000 0.512000
1 256.0 2.730667 ... 3.276800 3.276800
2 384.0 7.372800 ... 8.507077 8.507077
3 512.0 14.563555 ... 16.384000 15.420235
1 256.0 2.730667 ... 3.276800 2.978909
2 384.0 7.372800 ... 7.899428 7.899428
3 512.0 14.563555 ... 15.420235 15.420235
4 640.0 22.260869 ... 24.380953 24.380953
5 768.0 32.768000 ... 34.028308 34.028308
6 896.0 37.971025 ... 39.025776 39.025776
6 896.0 39.025776 ... 39.025776 39.025776
7 1024.0 49.932191 ... 52.428801 52.428801
8 1152.0 44.566925 ... 46.656000 45.938215
8 1152.0 44.566925 ... 45.938215 45.938215
9 1280.0 51.200001 ... 56.109587 56.109587
10 1408.0 64.138541 ... 65.684049 58.601554
11 1536.0 78.643199 ... 75.296679 75.296679
12 1664.0 62.929456 ... 61.636381 61.636381
13 1792.0 72.983276 ... 68.953520 68.533074
14 1920.0 69.120002 ... 69.120002 69.467336
15 2048.0 73.584279 ... 75.573044 75.234154
16 2176.0 83.155572 ... 79.855747 79.855747
17 2304.0 68.251065 ... 72.607513 72.828879
18 2432.0 71.305746 ... 80.963875 80.963875
19 2560.0 77.649287 ... 76.740048 75.155963
20 2688.0 83.552988 ... 81.053536 83.552988
21 2816.0 79.154642 ... 78.726003 78.161663
22 2944.0 81.967162 ... 78.605729 79.737653
23 3072.0 79.415291 ... 81.825298 83.391907
24 3200.0 84.210524 ... 89.385477 85.333333
25 3328.0 83.905938 ... 81.346098 81.808290
26 3456.0 81.108217 ... 81.026701 85.133652
27 3584.0 87.381330 ... 91.750399 85.064084
28 3712.0 84.159518 ... 85.309435 88.326564
29 3840.0 84.550462 ... 87.217666 87.493673
30 3968.0 92.442373 ... 84.680037 83.692683
31 4096.0 93.662059 ... 91.867031 91.616198
10 1408.0 64.138541 ... 65.684049 58.621246
11 1536.0 79.526831 ... 76.106321 75.296679
12 1664.0 63.372618 ... 61.636381 62.061463
13 1792.0 72.983276 ... 69.379162 68.533074
14 1920.0 69.467336 ... 68.776119 69.120002
15 2048.0 73.908442 ... 75.573044 74.898285
16 2176.0 83.155572 ... 80.494588 79.855747
17 2304.0 68.446623 ... 73.051599 72.387489
18 2432.0 71.125224 ... 80.269900 79.139336
19 2560.0 77.833728 ... 76.740048 74.812787
20 2688.0 83.737433 ... 80.196737 82.463163
21 2816.0 83.552120 ... 78.442822 77.882512
22 2944.0 82.102191 ... 81.034195 78.979452
23 3072.0 80.202695 ... 84.010539 79.750851
24 3200.0 84.432717 ... 89.012517 86.720870
25 3328.0 79.114032 ... 78.851363 81.071278
26 3456.0 81.518272 ... 87.252780 82.773682
27 3584.0 84.905939 ... 95.654673 95.451583
28 3712.0 84.088676 ... 82.902362 84.159518
29 3840.0 83.655065 ... 84.036474 85.267542
30 3968.0 92.935215 ... 84.797731 83.807647
31 4096.0 93.336389 ... 91.616198 91.118618
[32 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 12.186 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 15.188 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>03:31.335</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>03:36.105</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,15 +183,15 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>02:12.186</p></td>
<td><p>02:15.188</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>01:08.185</p></td>
<td><p>01:08.252</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>00:10.964</p></td>
<td><p>00:12.665</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>

View File

@@ -175,7 +175,7 @@
<div class="section" id="welcome-to-triton-s-documentation">
<h1>Welcome to Tritons documentation!<a class="headerlink" href="#welcome-to-triton-s-documentation" title="Permalink to this headline"></a></h1>
<p>Triton is an language and compiler for parallel programming. It aims to provide a Python-based programming environment for productively writing custom DNN compute kernels capable of running at maximal throughput on modern GPU hardware.</p>
<p>Triton is a language and compiler for parallel programming. It aims to provide a Python-based programming environment for productively writing custom DNN compute kernels capable of running at maximal throughput on modern GPU hardware.</p>
<div class="section" id="getting-started">
<h2>Getting Started<a class="headerlink" href="#getting-started" title="Permalink to this headline"></a></h2>
<ul class="simple">

File diff suppressed because one or more lines are too long