[GH-PAGES] Updated website
Before Width: | Height: | Size: 24 KiB After Width: | Height: | Size: 24 KiB |
Before Width: | Height: | Size: 15 KiB After Width: | Height: | Size: 15 KiB |
Before Width: | Height: | Size: 39 KiB After Width: | Height: | Size: 39 KiB |
Before Width: | Height: | Size: 24 KiB After Width: | Height: | Size: 24 KiB |
Before Width: | Height: | Size: 55 KiB After Width: | Height: | Size: 56 KiB |
Before Width: | Height: | Size: 31 KiB After Width: | Height: | Size: 32 KiB |
@@ -33,12 +33,12 @@ You can install the Python package from source by running the following commands
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
git clone https://github.com/ptillet/triton.git;
|
||||
git clone https://github.com/openai/triton.git;
|
||||
cd triton/python;
|
||||
pip install cmake; # build time dependency
|
||||
pip install -e .
|
||||
|
||||
Note that, if llvm-11 is not present on your system, the setup.py script will download LLVM static libraries on the web and link against that.
|
||||
Note that, if llvm-11 is not present on your system, the setup.py script will download the official LLVM11 static libraries link against that.
|
||||
|
||||
You can then test your installation by running the unit tests:
|
||||
|
||||
|
@@ -216,13 +216,13 @@ We can now run the decorated function above. Pass `print_data=True` to see the p
|
||||
|
||||
vector-add-performance:
|
||||
size Triton Torch
|
||||
0 4096.0 8.000000 9.600000
|
||||
0 4096.0 9.600000 9.600000
|
||||
1 8192.0 19.200000 19.200000
|
||||
2 16384.0 38.400001 38.400001
|
||||
3 32768.0 76.800002 76.800002
|
||||
3 32768.0 63.999998 76.800002
|
||||
4 65536.0 127.999995 127.999995
|
||||
5 131072.0 219.428568 219.428568
|
||||
6 262144.0 384.000001 384.000001
|
||||
6 262144.0 341.333321 384.000001
|
||||
7 524288.0 472.615390 472.615390
|
||||
8 1048576.0 614.400016 614.400016
|
||||
9 2097152.0 722.823517 722.823517
|
||||
@@ -230,7 +230,7 @@ We can now run the decorated function above. Pass `print_data=True` to see the p
|
||||
11 8388608.0 812.429770 812.429770
|
||||
12 16777216.0 833.084721 833.084721
|
||||
13 33554432.0 843.811163 843.811163
|
||||
14 67108864.0 848.362445 848.362445
|
||||
14 67108864.0 849.278610 848.362445
|
||||
15 134217728.0 851.577704 850.656574
|
||||
|
||||
|
||||
@@ -239,7 +239,7 @@ We can now run the decorated function above. Pass `print_data=True` to see the p
|
||||
|
||||
.. rst-class:: sphx-glr-timing
|
||||
|
||||
**Total running time of the script:** ( 0 minutes 10.964 seconds)
|
||||
**Total running time of the script:** ( 0 minutes 12.665 seconds)
|
||||
|
||||
|
||||
.. _sphx_glr_download_getting-started_tutorials_01-vector-add.py:
|
||||
|
@@ -261,17 +261,17 @@ We will then compare its performance against (1) :code:`torch.softmax` and (2) t
|
||||
|
||||
softmax-performance:
|
||||
N Triton Torch (native) Torch (jit)
|
||||
0 256.0 512.000001 546.133347 273.066674
|
||||
0 256.0 512.000001 512.000001 273.066674
|
||||
1 384.0 585.142862 585.142862 261.446801
|
||||
2 512.0 630.153853 585.142849 264.258068
|
||||
3 640.0 682.666684 640.000002 265.974036
|
||||
2 512.0 630.153853 606.814814 264.258068
|
||||
3 640.0 682.666684 640.000002 269.473696
|
||||
4 768.0 702.171410 664.216187 273.066663
|
||||
.. ... ... ... ...
|
||||
93 12160.0 812.359066 405.755985 329.204728
|
||||
93 12160.0 812.359066 406.179533 329.483481
|
||||
94 12288.0 812.429770 415.661740 329.602681
|
||||
95 12416.0 810.840807 411.722274 329.173158
|
||||
96 12544.0 810.925276 412.971190 329.292871
|
||||
97 12672.0 811.007961 412.097543 329.142870
|
||||
97 12672.0 811.007961 412.516771 329.142870
|
||||
|
||||
[98 rows x 4 columns]
|
||||
|
||||
@@ -290,7 +290,7 @@ In the above plot, we can see that:
|
||||
|
||||
.. rst-class:: sphx-glr-timing
|
||||
|
||||
**Total running time of the script:** ( 1 minutes 8.185 seconds)
|
||||
**Total running time of the script:** ( 1 minutes 8.252 seconds)
|
||||
|
||||
|
||||
.. _sphx_glr_download_getting-started_tutorials_02-fused-softmax.py:
|
||||
|
@@ -371,37 +371,37 @@ We can now compare the performance of our kernel against that of cuBLAS. Here we
|
||||
matmul-performance:
|
||||
M cuBLAS ... Triton Triton (+ LeakyReLU)
|
||||
0 128.0 0.455111 ... 0.512000 0.512000
|
||||
1 256.0 2.730667 ... 3.276800 3.276800
|
||||
2 384.0 7.372800 ... 8.507077 8.507077
|
||||
3 512.0 14.563555 ... 16.384000 15.420235
|
||||
1 256.0 2.730667 ... 3.276800 2.978909
|
||||
2 384.0 7.372800 ... 7.899428 7.899428
|
||||
3 512.0 14.563555 ... 15.420235 15.420235
|
||||
4 640.0 22.260869 ... 24.380953 24.380953
|
||||
5 768.0 32.768000 ... 34.028308 34.028308
|
||||
6 896.0 37.971025 ... 39.025776 39.025776
|
||||
6 896.0 39.025776 ... 39.025776 39.025776
|
||||
7 1024.0 49.932191 ... 52.428801 52.428801
|
||||
8 1152.0 44.566925 ... 46.656000 45.938215
|
||||
8 1152.0 44.566925 ... 45.938215 45.938215
|
||||
9 1280.0 51.200001 ... 56.109587 56.109587
|
||||
10 1408.0 64.138541 ... 65.684049 58.601554
|
||||
11 1536.0 78.643199 ... 75.296679 75.296679
|
||||
12 1664.0 62.929456 ... 61.636381 61.636381
|
||||
13 1792.0 72.983276 ... 68.953520 68.533074
|
||||
14 1920.0 69.120002 ... 69.120002 69.467336
|
||||
15 2048.0 73.584279 ... 75.573044 75.234154
|
||||
16 2176.0 83.155572 ... 79.855747 79.855747
|
||||
17 2304.0 68.251065 ... 72.607513 72.828879
|
||||
18 2432.0 71.305746 ... 80.963875 80.963875
|
||||
19 2560.0 77.649287 ... 76.740048 75.155963
|
||||
20 2688.0 83.552988 ... 81.053536 83.552988
|
||||
21 2816.0 79.154642 ... 78.726003 78.161663
|
||||
22 2944.0 81.967162 ... 78.605729 79.737653
|
||||
23 3072.0 79.415291 ... 81.825298 83.391907
|
||||
24 3200.0 84.210524 ... 89.385477 85.333333
|
||||
25 3328.0 83.905938 ... 81.346098 81.808290
|
||||
26 3456.0 81.108217 ... 81.026701 85.133652
|
||||
27 3584.0 87.381330 ... 91.750399 85.064084
|
||||
28 3712.0 84.159518 ... 85.309435 88.326564
|
||||
29 3840.0 84.550462 ... 87.217666 87.493673
|
||||
30 3968.0 92.442373 ... 84.680037 83.692683
|
||||
31 4096.0 93.662059 ... 91.867031 91.616198
|
||||
10 1408.0 64.138541 ... 65.684049 58.621246
|
||||
11 1536.0 79.526831 ... 76.106321 75.296679
|
||||
12 1664.0 63.372618 ... 61.636381 62.061463
|
||||
13 1792.0 72.983276 ... 69.379162 68.533074
|
||||
14 1920.0 69.467336 ... 68.776119 69.120002
|
||||
15 2048.0 73.908442 ... 75.573044 74.898285
|
||||
16 2176.0 83.155572 ... 80.494588 79.855747
|
||||
17 2304.0 68.446623 ... 73.051599 72.387489
|
||||
18 2432.0 71.125224 ... 80.269900 79.139336
|
||||
19 2560.0 77.833728 ... 76.740048 74.812787
|
||||
20 2688.0 83.737433 ... 80.196737 82.463163
|
||||
21 2816.0 83.552120 ... 78.442822 77.882512
|
||||
22 2944.0 82.102191 ... 81.034195 78.979452
|
||||
23 3072.0 80.202695 ... 84.010539 79.750851
|
||||
24 3200.0 84.432717 ... 89.012517 86.720870
|
||||
25 3328.0 79.114032 ... 78.851363 81.071278
|
||||
26 3456.0 81.518272 ... 87.252780 82.773682
|
||||
27 3584.0 84.905939 ... 95.654673 95.451583
|
||||
28 3712.0 84.088676 ... 82.902362 84.159518
|
||||
29 3840.0 83.655065 ... 84.036474 85.267542
|
||||
30 3968.0 92.935215 ... 84.797731 83.807647
|
||||
31 4096.0 93.336389 ... 91.616198 91.118618
|
||||
|
||||
[32 rows x 5 columns]
|
||||
|
||||
@@ -411,7 +411,7 @@ We can now compare the performance of our kernel against that of cuBLAS. Here we
|
||||
|
||||
.. rst-class:: sphx-glr-timing
|
||||
|
||||
**Total running time of the script:** ( 2 minutes 12.186 seconds)
|
||||
**Total running time of the script:** ( 2 minutes 15.188 seconds)
|
||||
|
||||
|
||||
.. _sphx_glr_download_getting-started_tutorials_03-matrix-multiplication.py:
|
||||
|
@@ -5,12 +5,12 @@
|
||||
|
||||
Computation times
|
||||
=================
|
||||
**03:31.335** total execution time for **getting-started_tutorials** files:
|
||||
**03:36.105** total execution time for **getting-started_tutorials** files:
|
||||
|
||||
+---------------------------------------------------------------------------------------------------------+-----------+--------+
|
||||
| :ref:`sphx_glr_getting-started_tutorials_03-matrix-multiplication.py` (``03-matrix-multiplication.py``) | 02:12.186 | 0.0 MB |
|
||||
| :ref:`sphx_glr_getting-started_tutorials_03-matrix-multiplication.py` (``03-matrix-multiplication.py``) | 02:15.188 | 0.0 MB |
|
||||
+---------------------------------------------------------------------------------------------------------+-----------+--------+
|
||||
| :ref:`sphx_glr_getting-started_tutorials_02-fused-softmax.py` (``02-fused-softmax.py``) | 01:08.185 | 0.0 MB |
|
||||
| :ref:`sphx_glr_getting-started_tutorials_02-fused-softmax.py` (``02-fused-softmax.py``) | 01:08.252 | 0.0 MB |
|
||||
+---------------------------------------------------------------------------------------------------------+-----------+--------+
|
||||
| :ref:`sphx_glr_getting-started_tutorials_01-vector-add.py` (``01-vector-add.py``) | 00:10.964 | 0.0 MB |
|
||||
| :ref:`sphx_glr_getting-started_tutorials_01-vector-add.py` (``01-vector-add.py``) | 00:12.665 | 0.0 MB |
|
||||
+---------------------------------------------------------------------------------------------------------+-----------+--------+
|
||||
|
@@ -1,7 +1,7 @@
|
||||
Welcome to Triton's documentation!
|
||||
==================================
|
||||
|
||||
Triton is an language and compiler for parallel programming. It aims to provide a Python-based programming environment for productively writing custom DNN compute kernels capable of running at maximal throughput on modern GPU hardware.
|
||||
Triton is a language and compiler for parallel programming. It aims to provide a Python-based programming environment for productively writing custom DNN compute kernels capable of running at maximal throughput on modern GPU hardware.
|
||||
|
||||
Getting Started
|
||||
---------------
|
||||
@@ -49,4 +49,4 @@ Check out the following documents to learn more about Triton and how it compares
|
||||
:hidden:
|
||||
|
||||
programming-guide/chapter-1/introduction
|
||||
programming-guide/chapter-2/related-work
|
||||
programming-guide/chapter-2/related-work
|
||||
|
@@ -200,13 +200,13 @@
|
||||
<div class="section" id="python-package">
|
||||
<h3>Python Package<a class="headerlink" href="#python-package" title="Permalink to this headline">¶</a></h3>
|
||||
<p>You can install the Python package from source by running the following commands:</p>
|
||||
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>git clone https://github.com/ptillet/triton.git<span class="p">;</span>
|
||||
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>git clone https://github.com/openai/triton.git<span class="p">;</span>
|
||||
<span class="nb">cd</span> triton/python<span class="p">;</span>
|
||||
pip install cmake<span class="p">;</span> <span class="c1"># build time dependency</span>
|
||||
pip install -e .
|
||||
</pre></div>
|
||||
</div>
|
||||
<p>Note that, if llvm-11 is not present on your system, the setup.py script will download LLVM static libraries on the web and link against that.</p>
|
||||
<p>Note that, if llvm-11 is not present on your system, the setup.py script will download the official LLVM11 static libraries link against that.</p>
|
||||
<p>You can then test your installation by running the unit tests:</p>
|
||||
<div class="highlight-bash notranslate"><div class="highlight"><pre><span></span>pytest -vs .
|
||||
</pre></div>
|
||||
|
@@ -305,13 +305,13 @@ for different problem sizes.</p>
|
||||
<p class="sphx-glr-script-out">Out:</p>
|
||||
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>vector-add-performance:
|
||||
size Triton Torch
|
||||
0 4096.0 8.000000 9.600000
|
||||
0 4096.0 9.600000 9.600000
|
||||
1 8192.0 19.200000 19.200000
|
||||
2 16384.0 38.400001 38.400001
|
||||
3 32768.0 76.800002 76.800002
|
||||
3 32768.0 63.999998 76.800002
|
||||
4 65536.0 127.999995 127.999995
|
||||
5 131072.0 219.428568 219.428568
|
||||
6 262144.0 384.000001 384.000001
|
||||
6 262144.0 341.333321 384.000001
|
||||
7 524288.0 472.615390 472.615390
|
||||
8 1048576.0 614.400016 614.400016
|
||||
9 2097152.0 722.823517 722.823517
|
||||
@@ -319,11 +319,11 @@ for different problem sizes.</p>
|
||||
11 8388608.0 812.429770 812.429770
|
||||
12 16777216.0 833.084721 833.084721
|
||||
13 33554432.0 843.811163 843.811163
|
||||
14 67108864.0 848.362445 848.362445
|
||||
14 67108864.0 849.278610 848.362445
|
||||
15 134217728.0 851.577704 850.656574
|
||||
</pre></div>
|
||||
</div>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 10.964 seconds)</p>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 12.665 seconds)</p>
|
||||
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
|
||||
<div class="sphx-glr-download sphx-glr-download-python docutils container">
|
||||
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>
|
||||
|
@@ -346,17 +346,17 @@ We will then compare its performance against (1) <code class="code docutils lite
|
||||
<p class="sphx-glr-script-out">Out:</p>
|
||||
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
|
||||
N Triton Torch (native) Torch (jit)
|
||||
0 256.0 512.000001 546.133347 273.066674
|
||||
0 256.0 512.000001 512.000001 273.066674
|
||||
1 384.0 585.142862 585.142862 261.446801
|
||||
2 512.0 630.153853 585.142849 264.258068
|
||||
3 640.0 682.666684 640.000002 265.974036
|
||||
2 512.0 630.153853 606.814814 264.258068
|
||||
3 640.0 682.666684 640.000002 269.473696
|
||||
4 768.0 702.171410 664.216187 273.066663
|
||||
.. ... ... ... ...
|
||||
93 12160.0 812.359066 405.755985 329.204728
|
||||
93 12160.0 812.359066 406.179533 329.483481
|
||||
94 12288.0 812.429770 415.661740 329.602681
|
||||
95 12416.0 810.840807 411.722274 329.173158
|
||||
96 12544.0 810.925276 412.971190 329.292871
|
||||
97 12672.0 811.007961 412.097543 329.142870
|
||||
97 12672.0 811.007961 412.516771 329.142870
|
||||
|
||||
[98 rows x 4 columns]
|
||||
</pre></div>
|
||||
@@ -370,7 +370,7 @@ This means that – when temporary data is too large to fit entirely in the GPU
|
||||
Note that our Triton kernel is not only faster than PyTorch’s CUDA kernel, it is also <strong>easier to read, understand and maintain</strong>.</p></li>
|
||||
</ul>
|
||||
</div></blockquote>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 8.185 seconds)</p>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 8.252 seconds)</p>
|
||||
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
|
||||
<div class="sphx-glr-download sphx-glr-download-python docutils container">
|
||||
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>
|
||||
|
@@ -476,42 +476,42 @@ tensor(True, device='cuda:0')
|
||||
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
|
||||
M cuBLAS ... Triton Triton (+ LeakyReLU)
|
||||
0 128.0 0.455111 ... 0.512000 0.512000
|
||||
1 256.0 2.730667 ... 3.276800 3.276800
|
||||
2 384.0 7.372800 ... 8.507077 8.507077
|
||||
3 512.0 14.563555 ... 16.384000 15.420235
|
||||
1 256.0 2.730667 ... 3.276800 2.978909
|
||||
2 384.0 7.372800 ... 7.899428 7.899428
|
||||
3 512.0 14.563555 ... 15.420235 15.420235
|
||||
4 640.0 22.260869 ... 24.380953 24.380953
|
||||
5 768.0 32.768000 ... 34.028308 34.028308
|
||||
6 896.0 37.971025 ... 39.025776 39.025776
|
||||
6 896.0 39.025776 ... 39.025776 39.025776
|
||||
7 1024.0 49.932191 ... 52.428801 52.428801
|
||||
8 1152.0 44.566925 ... 46.656000 45.938215
|
||||
8 1152.0 44.566925 ... 45.938215 45.938215
|
||||
9 1280.0 51.200001 ... 56.109587 56.109587
|
||||
10 1408.0 64.138541 ... 65.684049 58.601554
|
||||
11 1536.0 78.643199 ... 75.296679 75.296679
|
||||
12 1664.0 62.929456 ... 61.636381 61.636381
|
||||
13 1792.0 72.983276 ... 68.953520 68.533074
|
||||
14 1920.0 69.120002 ... 69.120002 69.467336
|
||||
15 2048.0 73.584279 ... 75.573044 75.234154
|
||||
16 2176.0 83.155572 ... 79.855747 79.855747
|
||||
17 2304.0 68.251065 ... 72.607513 72.828879
|
||||
18 2432.0 71.305746 ... 80.963875 80.963875
|
||||
19 2560.0 77.649287 ... 76.740048 75.155963
|
||||
20 2688.0 83.552988 ... 81.053536 83.552988
|
||||
21 2816.0 79.154642 ... 78.726003 78.161663
|
||||
22 2944.0 81.967162 ... 78.605729 79.737653
|
||||
23 3072.0 79.415291 ... 81.825298 83.391907
|
||||
24 3200.0 84.210524 ... 89.385477 85.333333
|
||||
25 3328.0 83.905938 ... 81.346098 81.808290
|
||||
26 3456.0 81.108217 ... 81.026701 85.133652
|
||||
27 3584.0 87.381330 ... 91.750399 85.064084
|
||||
28 3712.0 84.159518 ... 85.309435 88.326564
|
||||
29 3840.0 84.550462 ... 87.217666 87.493673
|
||||
30 3968.0 92.442373 ... 84.680037 83.692683
|
||||
31 4096.0 93.662059 ... 91.867031 91.616198
|
||||
10 1408.0 64.138541 ... 65.684049 58.621246
|
||||
11 1536.0 79.526831 ... 76.106321 75.296679
|
||||
12 1664.0 63.372618 ... 61.636381 62.061463
|
||||
13 1792.0 72.983276 ... 69.379162 68.533074
|
||||
14 1920.0 69.467336 ... 68.776119 69.120002
|
||||
15 2048.0 73.908442 ... 75.573044 74.898285
|
||||
16 2176.0 83.155572 ... 80.494588 79.855747
|
||||
17 2304.0 68.446623 ... 73.051599 72.387489
|
||||
18 2432.0 71.125224 ... 80.269900 79.139336
|
||||
19 2560.0 77.833728 ... 76.740048 74.812787
|
||||
20 2688.0 83.737433 ... 80.196737 82.463163
|
||||
21 2816.0 83.552120 ... 78.442822 77.882512
|
||||
22 2944.0 82.102191 ... 81.034195 78.979452
|
||||
23 3072.0 80.202695 ... 84.010539 79.750851
|
||||
24 3200.0 84.432717 ... 89.012517 86.720870
|
||||
25 3328.0 79.114032 ... 78.851363 81.071278
|
||||
26 3456.0 81.518272 ... 87.252780 82.773682
|
||||
27 3584.0 84.905939 ... 95.654673 95.451583
|
||||
28 3712.0 84.088676 ... 82.902362 84.159518
|
||||
29 3840.0 83.655065 ... 84.036474 85.267542
|
||||
30 3968.0 92.935215 ... 84.797731 83.807647
|
||||
31 4096.0 93.336389 ... 91.616198 91.118618
|
||||
|
||||
[32 rows x 5 columns]
|
||||
</pre></div>
|
||||
</div>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 12.186 seconds)</p>
|
||||
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 15.188 seconds)</p>
|
||||
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
|
||||
<div class="sphx-glr-download sphx-glr-download-python docutils container">
|
||||
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>
|
||||
|
@@ -174,7 +174,7 @@
|
||||
|
||||
<div class="section" id="computation-times">
|
||||
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline">¶</a></h1>
|
||||
<p><strong>03:31.335</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
|
||||
<p><strong>03:36.105</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
|
||||
<table class="docutils align-default">
|
||||
<colgroup>
|
||||
<col style="width: 85%" />
|
||||
@@ -183,15 +183,15 @@
|
||||
</colgroup>
|
||||
<tbody>
|
||||
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
|
||||
<td><p>02:12.186</p></td>
|
||||
<td><p>02:15.188</p></td>
|
||||
<td><p>0.0 MB</p></td>
|
||||
</tr>
|
||||
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
|
||||
<td><p>01:08.185</p></td>
|
||||
<td><p>01:08.252</p></td>
|
||||
<td><p>0.0 MB</p></td>
|
||||
</tr>
|
||||
<tr class="row-odd"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
|
||||
<td><p>00:10.964</p></td>
|
||||
<td><p>00:12.665</p></td>
|
||||
<td><p>0.0 MB</p></td>
|
||||
</tr>
|
||||
</tbody>
|
||||
|
@@ -175,7 +175,7 @@
|
||||
|
||||
<div class="section" id="welcome-to-triton-s-documentation">
|
||||
<h1>Welcome to Triton’s documentation!<a class="headerlink" href="#welcome-to-triton-s-documentation" title="Permalink to this headline">¶</a></h1>
|
||||
<p>Triton is an language and compiler for parallel programming. It aims to provide a Python-based programming environment for productively writing custom DNN compute kernels capable of running at maximal throughput on modern GPU hardware.</p>
|
||||
<p>Triton is a language and compiler for parallel programming. It aims to provide a Python-based programming environment for productively writing custom DNN compute kernels capable of running at maximal throughput on modern GPU hardware.</p>
|
||||
<div class="section" id="getting-started">
|
||||
<h2>Getting Started<a class="headerlink" href="#getting-started" title="Permalink to this headline">¶</a></h2>
|
||||
<ul class="simple">
|
||||
|