[PYTHON][EXAMPLES] Removed obsolete files

This commit is contained in:
Philippe Tillet
2020-02-18 12:25:05 -05:00
committed by Philippe Tillet
parent 3816f2f259
commit 9e54a03006
3 changed files with 0 additions and 170 deletions

View File

@@ -1,48 +0,0 @@
import torch
import numpy as np
import reference
import optimized
from time import time
use_half = True
def cast(x):
if use_half:
return x.half()
else:
return x
# GPU device
device = torch.device("cuda:0")
# shapes
batch, nhead = 8, 28
dm, dk, dv = 1024, 1024, 1024
lq, lk, lv = 1024, 1024, 1024
# initialize tensors
torch.manual_seed(0)
np.random.seed(0)
query = cast(torch.randn(batch, lq, dm)).cuda()
key = cast(torch.randn(batch, lk, dm)).cuda()
value = cast(torch.randn(batch, lv, dm)).cuda()
# initialize layers
torch.manual_seed(0)
np.random.seed(0)
rattn = cast(reference.MultiHeadAttention(nhead, dm, dk, dv).to(device))
torch.manual_seed(0)
np.random.seed(0)
tattn = cast(optimized.MultiHeadAttention(nhead, dm, dk, dv).to(device))
# test
routput, _ = rattn(query, key, value)
toutput, _ = tattn(query, key, value)
diff = torch.max(torch.abs(routput - toutput))
assert diff < 1e-2
# benchmark
start = time()
routput, _ = rattn(query, key, value)
end = time()
rtime = end - start
start = time()
toutput, _ = tattn(query, key, value)
end = time()
ttime = end - start
print(f'Torch: {rtime} s')
print(f'Triton: {ttime} s')

View File

@@ -1,50 +0,0 @@
import numpy as np
import torch
import torch.nn as nn
import triton
class MultiHeadAttention(nn.Module):
''' Multi-Head Attention module '''
def __init__(self, n_head, d_model, d_k, d_v):
super().__init__()
self.n_head = n_head
self.d_k = d_k
self.d_v = d_v
# linear layers
self.w_qs = nn.Linear(d_model, n_head * d_k)
self.w_ks = nn.Linear(d_model, n_head * d_k)
self.w_vs = nn.Linear(d_model, n_head * d_v)
self.fc = nn.Linear(n_head * d_v, d_model)
# initialize weights
nn.init.normal_(self.w_qs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k)))
nn.init.normal_(self.w_ks.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k)))
nn.init.normal_(self.w_vs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_v)))
nn.init.xavier_normal_(self.fc.weight)
# layer normalization
self.layer_norm = nn.LayerNorm(d_model)
def forward(self, q, k, v, mask=None):
# dimensions
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
sz_b, len_q, _ = q.size()
sz_b, len_k, _ = k.size()
sz_b, len_v, _ = v.size()
# linear transformations
residual = q
q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)
# scaled dot-product attention
attn = triton.ops.einsum('blhk,bthk->hblt', q, k, [n_head, sz_b, len_q, len_k])
attn = attn / np.sqrt(d_k)
if mask is not None:
attn = attn.masked_fill(mask[None], -np.inf)
attn = torch.softmax(attn, dim=3)
output = triton.ops.einsum('hblt,bthv->blhv', attn, v, [sz_b, len_q, n_head, d_v])
output = output.view(sz_b, len_q, -1)
output = self.fc(output)
# epilogue
output = self.layer_norm(output + residual)
return output, attn

View File

@@ -1,72 +0,0 @@
import numpy as np
import torch
import torch.nn as nn
class ScaledDotProductAttention(nn.Module):
''' Scaled Dot-Product Attention '''
def __init__(self, temperature, attn_dropout=0.1):
super().__init__()
self.temperature = temperature
self.softmax = nn.Softmax(dim=2)
def forward(self, q, k, v, mask=None):
attn = torch.bmm(q, k.transpose(1, 2))
attn = attn / self.temperature
if mask is not None:
attn = attn.masked_fill(mask, -np.inf)
attn = self.softmax(attn)
output = torch.bmm(attn, v)
return output, attn
class MultiHeadAttention(nn.Module):
''' Multi-Head Attention module '''
def __init__(self, n_head, d_model, d_k, d_v):
super().__init__()
self.n_head = n_head
self.d_k = d_k
self.d_v = d_v
# linear layers
self.w_qs = nn.Linear(d_model, n_head * d_k)
self.w_ks = nn.Linear(d_model, n_head * d_k)
self.w_vs = nn.Linear(d_model, n_head * d_v)
self.fc = nn.Linear(n_head * d_v, d_model)
# initialize weights
nn.init.normal_(self.w_qs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k)))
nn.init.normal_(self.w_ks.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k)))
nn.init.normal_(self.w_vs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_v)))
nn.init.xavier_normal_(self.fc.weight)
# normalization
self.layer_norm = nn.LayerNorm(d_model)
# scaled dot-product
self.attention = ScaledDotProductAttention(temperature=np.power(d_k, 0.5))
def forward(self, q, k, v, mask=None):
# dimensions
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
sz_b, len_q, _ = q.size()
sz_b, len_k, _ = k.size()
sz_b, len_v, _ = v.size()
# linear transformations
residual = q
q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)
# scaled dot-product attention
q = q.permute(2, 0, 1, 3).contiguous().view(-1, len_q, d_k) # (n*b) x lq x dk
k = k.permute(2, 0, 1, 3).contiguous().view(-1, len_k, d_k) # (n*b) x lk x dk
v = v.permute(2, 0, 1, 3).contiguous().view(-1, len_v, d_v) # (n*b) x lv x dv
if mask:
mask = mask.repeat(n_head, 1, 1) # (n*b) x .. x ..
output, attn = self.attention(q, k, v, mask=mask)
# linear transformation
output = output.view(n_head, sz_b, len_q, d_v)
output = output.permute(1, 2, 0, 3).contiguous().view(sz_b, len_q, -1) # b x lq x (n*dv)
output = self.fc(output)
# normalization
output = self.layer_norm(output + residual)
return output, attn