[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-07-19 00:52:52 +00:00
parent 30db1c142b
commit 9f8b4adf8e
169 changed files with 291 additions and 291 deletions

View File

@@ -330,7 +330,7 @@ for different problem sizes.</p>
3 32768.0 76.800002 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 384.000001
6 262144.0 384.000001 384.000001
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 722.823517
@@ -342,7 +342,7 @@ for different problem sizes.</p>
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 48.779 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 37.083 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -371,17 +371,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 546.133347 512.000001 190.511628
0 256.0 546.133347 546.133347 195.047621
1 384.0 614.400016 585.142862 153.600004
2 512.0 655.360017 585.142849 154.566038
3 640.0 706.206879 640.000002 158.759699
4 768.0 722.823517 664.216187 161.684218
3 640.0 706.206879 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 812.359066 406.179533 198.328233
94 12288.0 812.429770 415.222812 198.694297
95 12416.0 812.498981 411.722274 198.358474
96 12544.0 810.925276 412.546756 198.569388
97 12672.0 811.007961 412.097543 198.679085
93 12160.0 812.359066 406.179533 199.038365
94 12288.0 812.429770 416.101597 199.298541
95 12416.0 812.498981 412.149375 198.954424
96 12544.0 810.925276 412.546756 199.209928
97 12672.0 811.007961 412.097543 199.264875
[98 rows x 4 columns]
</pre></div>
@@ -394,7 +394,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 33.253 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 32.694 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -567,42 +567,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 2.978909 2.978909
1 384.0 7.372800 ... 7.899428 7.899428
2 512.0 14.563555 ... 15.420235 15.420235
0 256.0 2.730667 ... 2.978909 3.276800
1 384.0 7.372800 ... 7.899428 8.507077
2 512.0 14.563555 ... 15.420235 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 35.389441 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 49.932191 ... 53.773130 52.428801
6 1024.0 51.150050 ... 53.773130 52.428801
7 1152.0 45.242181 ... 48.161033 47.396572
8 1280.0 51.200001 ... 57.690139 57.690139
9 1408.0 64.138541 ... 68.147202 67.305878
10 1536.0 80.430545 ... 81.355034 79.526831
11 1664.0 62.929456 ... 63.372618 62.492442
12 1792.0 72.983276 ... 72.983276 59.467852
13 1920.0 69.120002 ... 71.626943 71.626943
11 1664.0 63.372618 ... 63.372618 62.492442
12 1792.0 72.983276 ... 73.460287 59.467852
13 1920.0 69.120002 ... 71.257735 70.892307
14 2048.0 73.908442 ... 78.398206 77.314362
15 2176.0 83.500614 ... 87.494120 85.998493
16 2304.0 68.251065 ... 77.810656 77.307030
17 2432.0 71.305746 ... 86.711310 85.653855
18 2560.0 77.833728 ... 82.539044 81.310171
19 2688.0 83.737433 ... 90.532356 89.464755
20 2816.0 83.873477 ... 84.687779 84.035084
21 2944.0 82.509987 ... 83.899046 82.646820
22 3072.0 81.825298 ... 89.877939 88.473602
23 3200.0 84.432717 ... 96.896287 95.593730
24 3328.0 83.130825 ... 85.857242 83.130825
25 3456.0 82.519518 ... 89.084603 90.281712
26 3584.0 84.111686 ... 92.315595 95.756542
27 3712.0 85.970176 ... 89.755028 87.937800
28 3840.0 81.138664 ... 89.839159 90.205545
29 3968.0 86.051653 ... 92.442373 85.932350
30 4096.0 94.453011 ... 87.267706 86.536250
15 2176.0 83.155572 ... 88.261612 86.367588
16 2304.0 68.446623 ... 78.064941 77.558029
17 2432.0 71.305746 ... 86.711310 85.915795
18 2560.0 78.019048 ... 82.539044 81.310171
19 2688.0 83.552988 ... 90.102270 89.888756
20 2816.0 83.712490 ... 84.852542 83.873477
21 2944.0 82.373605 ... 83.758038 82.921853
22 3072.0 82.540970 ... 85.922766 88.335577
23 3200.0 84.993363 ... 96.676741 96.385543
24 3328.0 84.003845 ... 86.217120 81.162679
25 3456.0 81.026701 ... 85.767626 89.183149
26 3584.0 87.211821 ... 99.463928 97.840469
27 3712.0 83.247783 ... 89.273764 84.088676
28 3840.0 85.070769 ... 90.723546 88.686451
29 3968.0 93.219206 ... 88.103928 87.441013
30 4096.0 90.565269 ... 86.037005 82.597115
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 6 minutes 27.642 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 7 minutes 17.371 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -374,7 +374,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.012 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.280 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -200,32 +200,32 @@ to download the full example code</p>
1 1536.0 630.153868 323.368435 511.999982
2 2048.0 668.734716 334.367358 520.126988
3 2560.0 694.237267 362.477870 512.000013
4 3072.0 712.347810 378.092307 496.484863
5 3584.0 725.873439 384.859062 448.000001
6 4096.0 728.177767 381.023256 455.111095
7 4608.0 670.254540 394.267384 426.173427
8 5120.0 688.403381 397.669909 420.102563
9 5632.0 704.000002 395.228063 415.262685
10 6144.0 697.191505 402.885254 409.600010
11 6656.0 700.631610 400.360920 400.360920
12 7168.0 690.891575 396.844306 386.154893
13 7680.0 678.895043 392.587863 386.415087
4 3072.0 712.347810 378.092307 501.551037
5 3584.0 725.873439 384.859062 455.111115
6 4096.0 728.177767 381.023256 458.293714
7 4608.0 670.254540 396.387087 431.157877
8 5120.0 688.403381 397.669909 422.268057
9 5632.0 704.000002 396.969169 417.185184
10 6144.0 697.191505 402.885254 411.313806
11 6656.0 705.271522 400.360920 400.360920
12 7168.0 690.891575 396.844306 387.459443
13 7680.0 678.895043 393.846167 387.634072
14 8192.0 633.198054 393.609605 371.308771
15 8704.0 627.315309 389.005597 380.502740
16 9216.0 606.814809 407.337026 383.002605
17 9728.0 587.350922 409.599987 382.427505
16 9216.0 606.814809 407.337026 383.999986
17 9728.0 587.350922 409.599987 383.369452
18 10240.0 564.965524 408.578556 382.803739
19 10752.0 546.133312 411.559798 381.445676
19 10752.0 547.872604 411.559798 381.445676
20 11264.0 533.207081 406.826188 373.134567
21 11776.0 520.486200 409.599991 377.587162
22 12288.0 513.336807 413.911572 383.251457
23 12800.0 504.433489 410.420828 376.470582
24 13312.0 494.180982 405.699062 376.310952
25 13824.0 481.882350 411.122660 379.389355
21 11776.0 520.486200 410.492372 378.345375
22 12288.0 514.680630 414.784810 383.251457
23 12800.0 504.433489 410.420828 377.163903
24 13312.0 494.180982 405.699062 376.976995
25 13824.0 481.882350 411.888257 379.389355
26 14336.0 471.967074 406.695045 374.185964
27 14848.0 461.297068 408.192434 375.304904
28 15360.0 454.269882 406.214870 378.092307
29 15872.0 447.887117 406.974373 376.225175
29 15872.0 447.098578 407.627589 376.783377
</pre></div>
</div>
<div class="line-block">
@@ -543,7 +543,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 33.977 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 38.079 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -543,7 +543,7 @@ to download the full example code</p>
<span class="c1"># bench_flash_attention.run(save_path=&#39;.&#39;, print_data=True)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.071 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.073 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-06-fused-attention-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/54a35f6ec55f9746935b9566fb6bb1df/06-fused-attention.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">06-fused-attention.py</span></code></a></p>

View File

@@ -276,7 +276,7 @@ tensor([0.4105, 0.5430, 0.0249, ..., 0.0424, 0.5351, 0.8149], device=&#39;cuda:
The maximum difference between torch and triton is 2.384185791015625e-07
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.010 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.264 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-07-libdevice-function-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/3ff29f967ace7985da24aab10352fc76/07-libdevice-function.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">07-libdevice-function.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>17:23.743</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>18:05.845</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,31 +183,31 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>06:27.642</p></td>
<td><p>07:17.371</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>05:33.977</p></td>
<td><p>05:38.079</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:33.253</p></td>
<td><p>03:32.694</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:48.779</p></td>
<td><p>01:37.083</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.280</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="07-libdevice-function.html#sphx-glr-getting-started-tutorials-07-libdevice-function-py"><span class="std std-ref">Libdevice function</span></a> (<code class="docutils literal notranslate"><span class="pre">07-libdevice-function.py</span></code>)</p></td>
<td><p>00:00.264</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="06-fused-attention.html#sphx-glr-getting-started-tutorials-06-fused-attention-py"><span class="std std-ref">Fused Attention</span></a> (<code class="docutils literal notranslate"><span class="pre">06-fused-attention.py</span></code>)</p></td>
<td><p>00:00.071</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.012</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="07-libdevice-function.html#sphx-glr-getting-started-tutorials-07-libdevice-function-py"><span class="std std-ref">Libdevice function</span></a> (<code class="docutils literal notranslate"><span class="pre">07-libdevice-function.py</span></code>)</p></td>
<td><p>00:00.010</p></td>
<td><p>00:00.073</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>