[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-09-13 00:54:01 +00:00
parent a81d78b680
commit 9fd9c56321
165 changed files with 270 additions and 270 deletions

View File

@@ -324,7 +324,7 @@ for different problem sizes.</p>
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 63.999998 76.800002
3 32768.0 76.800002 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 384.000001
@@ -334,12 +334,12 @@ for different problem sizes.</p>
10 4194304.0 780.190482 780.190482
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
13 33554432.0 842.004273 842.004273
13 33554432.0 842.004273 842.906750
14 67108864.0 847.448255 848.362445
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 42.907 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 46.556 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,17 +374,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 188.321838
1 384.0 585.142862 585.142862 151.703707
0 256.0 512.000001 546.133347 190.511628
1 384.0 585.142862 585.142862 153.600004
2 512.0 655.360017 606.814814 154.566038
3 640.0 682.666684 640.000002 160.000000
4 768.0 722.823517 664.216187 163.839992
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 812.359066 405.755985 198.936606
94 12288.0 814.111783 415.661740 199.096718
95 12416.0 812.498981 412.577363 198.854847
96 12544.0 812.566838 412.971190 199.012395
97 12672.0 812.633240 412.097543 199.167004
93 12160.0 812.359066 406.179533 198.936606
94 12288.0 814.111783 415.222812 199.298541
95 12416.0 812.498981 411.722274 198.854847
96 12544.0 812.566838 413.396498 199.111113
97 12672.0 812.633240 412.097543 199.264875
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 23.982 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 23.713 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -568,42 +568,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 2.978909 2.978909
0 256.0 2.730667 ... 3.276800 2.978909
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 51.150050 ... 53.092457 52.428801
6 1024.0 51.150050 ... 53.773130 52.428801
7 1152.0 45.242181 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.109587
9 1408.0 64.138541 ... 67.305878 66.485074
10 1536.0 80.430545 ... 79.526831 78.643199
11 1664.0 62.929456 ... 62.061463 62.061463
12 1792.0 72.512412 ... 62.441243 62.441243
13 1920.0 69.120002 ... 70.172588 70.172588
14 2048.0 73.908442 ... 77.314362 76.959706
15 2176.0 83.500614 ... 86.367588 85.632545
8 1280.0 51.200001 ... 56.888887 56.888887
9 1408.0 64.138541 ... 67.305878 67.305878
10 1536.0 80.430545 ... 79.526831 79.526831
11 1664.0 63.372618 ... 62.492442 62.061463
12 1792.0 72.983276 ... 72.512412 72.047592
13 1920.0 69.120002 ... 70.530615 70.530615
14 2048.0 73.908442 ... 76.959706 76.959706
15 2176.0 83.500614 ... 85.632545 85.632545
16 2304.0 68.446623 ... 76.563695 76.563695
17 2432.0 71.305746 ... 74.719317 83.614477
18 2560.0 78.019048 ... 80.709358 80.313727
19 2688.0 83.922689 ... 88.628636 88.628636
20 2816.0 79.298560 ... 83.552120 83.233226
21 2944.0 80.510553 ... 81.967162 82.102191
22 3072.0 81.825298 ... 88.335577 88.197981
23 3200.0 84.321474 ... 87.549434 95.238096
24 3328.0 82.748617 ... 80.437202 83.808259
25 3456.0 81.766291 ... 91.304157 90.687926
26 3584.0 83.177979 ... 94.647779 97.628001
27 3712.0 85.455380 ... 86.192706 88.640059
28 3840.0 80.110103 ... 90.649182 85.996889
29 3968.0 91.747320 ... 78.421554 83.578035
30 4096.0 91.491294 ... 82.190894 84.334104
17 2432.0 71.305746 ... 74.918570 84.877538
18 2560.0 77.833728 ... 81.108913 81.108913
19 2688.0 83.552988 ... 89.254248 89.464755
20 2816.0 79.587973 ... 82.916747 82.916747
21 2944.0 81.832567 ... 82.509987 82.509987
22 3072.0 82.062468 ... 87.651868 88.197981
23 3200.0 81.424937 ... 93.704243 92.352095
24 3328.0 84.003845 ... 84.895397 84.298943
25 3456.0 81.230800 ... 90.790053 87.489490
26 3584.0 85.633710 ... 96.166193 96.683219
27 3712.0 82.423549 ... 87.094458 87.706180
28 3840.0 83.402717 ... 91.134731 87.011801
29 3968.0 91.301109 ... 86.144680 89.394823
30 4096.0 86.592080 ... 93.206754 86.313653
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 26.600 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 23.466 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -194,36 +194,36 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 311.088617 99.902435 319.168844
1 1536.0 354.461542 133.565214 344.523365
2 2048.0 423.724127 160.627450 334.367350
3 2560.0 461.954908 181.775141 330.322572
4 3072.0 515.580429 191.005181 316.429186
5 3584.0 551.384634 208.776702 308.301075
6 4096.0 568.231237 219.919464 300.623865
7 4608.0 500.416301 232.825259 288.751954
8 5120.0 529.655159 241.414550 287.102804
9 5632.0 540.671974 244.426754 291.939522
10 6144.0 548.163546 250.775512 287.438593
11 6656.0 530.710976 256.000009 285.767438
12 7168.0 516.612607 255.240352 279.726817
13 7680.0 485.052616 265.590783 284.006166
14 8192.0 464.794337 259.035567 279.272725
15 8704.0 416.127506 267.472468 285.767450
16 9216.0 431.157889 273.742580 289.887291
17 9728.0 438.857162 279.942444 289.308559
18 10240.0 446.836366 287.102804 290.496460
19 10752.0 429.364408 246.699797 289.941565
20 11264.0 429.786952 245.091565 286.372873
21 11776.0 421.826879 249.447482 288.391833
22 12288.0 421.905564 254.234486 294.911986
23 12800.0 413.458944 253.884294 290.084977
24 13312.0 411.711355 253.360814 290.179836
25 13824.0 404.604870 256.991469 292.056329
26 14336.0 397.761846 254.673567 288.402346
27 14848.0 382.351933 257.293872 289.481735
28 15360.0 376.932517 257.970599 288.000007
29 15872.0 368.402336 262.527914 291.006885
0 1024.0 311.088617 99.497980 315.076934
1 1536.0 354.461542 134.050910 338.201833
2 2048.0 423.724127 159.067963 321.254900
3 2560.0 465.454542 181.238943 326.808501
4 3072.0 515.580429 191.501303 315.076914
5 3584.0 551.384634 207.267476 307.199992
6 4096.0 568.231237 218.939860 299.707322
7 4608.0 500.416301 233.316456 290.267724
8 5120.0 529.655159 240.469672 285.104413
9 5632.0 542.843364 244.426754 290.683877
10 6144.0 546.133354 250.349744 286.322318
11 6656.0 532.479975 255.590406 286.793541
12 7168.0 513.528374 256.764187 281.558103
13 7680.0 486.332448 264.068761 283.133636
14 8192.0 464.794337 262.143998 282.077471
15 8704.0 416.958106 267.472468 285.767450
16 9216.0 430.319054 272.729961 289.129410
17 9728.0 438.857162 280.278512 289.667485
18 10240.0 447.650282 287.102804 290.840246
19 10752.0 432.241202 246.935876 290.267711
20 11264.0 427.071098 245.983625 288.204696
21 11776.0 422.457417 249.227509 288.981596
22 12288.0 419.504980 254.453844 295.207195
23 12800.0 413.458944 253.674644 290.359162
24 13312.0 411.181478 252.959629 290.443638
25 13824.0 404.604870 257.190689 292.056329
26 14336.0 397.302533 254.485198 288.402346
27 14848.0 381.942121 257.108233 289.246765
28 15360.0 374.253788 258.151252 287.775181
29 15872.0 366.982663 262.527914 290.562936
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 12.559 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 11.996 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>12:46.059</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>12:45.742</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,19 +183,19 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:26.600</p></td>
<td><p>05:23.466</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:23.982</p></td>
<td><p>03:23.713</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:12.559</p></td>
<td><p>02:11.996</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:42.907</p></td>
<td><p>01:46.556</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>