[PYTHON][EXAMPLES] Removed BlockSparse examples; see

https://github.com/ptillet/torch-blocksparse.git
This commit is contained in:
Philippe Tillet
2020-03-05 13:32:42 -05:00
committed by Philippe Tillet
parent 268894a5ce
commit 9fda39f64c

View File

@@ -1,364 +0,0 @@
import triton
import torch
class _linear(torch.autograd.Function):
src = '''
__global__ void main (TYPE* A __readonly __noalias __aligned(16),
TYPE* B __readonly __noalias __aligned(16),
TYPE* C __writeonly __noalias __aligned(16),
int lda, int ldb, int ldc,
int M, int Kmax,
int* lut,
int* locks, int nlocks) {
/* ---------------- */
/* Prologue */
/* ---------------- */
// program ids
int pid0 = get_program_id(0);
int pid1 = get_program_id(1);
#ifdef DW
// load LUT header
int *header = lut + pid0 * 2;
int i = *(header + 0);
int j = *(header + 1);
int K = Kmax / TZ;
int lockid = select(TZ > 1, 1, 0);
int offk = pid1 * K;
int offm = i * TM;
int offn = j * TN;
int maxid = get_num_programs(1);
#else
// load LUT header
int *header = lut + pid1 * 5;
int offset = *(header + 0);
int K = *(header + 1);
int column = *(header + 2);
int lockid = *(header + 3);
int maxid = *(header + 4);
int *pinc = lut + offset;
int offk = (*pinc) * TK;
int offm = pid0 * TM;
int offn = column * TN;
#endif
// initialize a, b pointers
int rka[TK] = offk + 0 ... TK;
int rkb[TK] = offk + 0 ... TK;
int ram[TM] = offm + (0 ... TM);
int rbn[TN] = offn + (0 ... TN);
TYPE* pa[TM, TK] = A + ram[:, newaxis] * STRIDE_AM + rka[newaxis, :] * STRIDE_AK;
TYPE* pb[TK, TN] = B + rbn[newaxis, :] * STRIDE_BN + rkb[:, newaxis] * STRIDE_BK;
// pre-fetch
bool checka[TM, TK] = ram[:, newaxis] < M;
bool checkb[TK, TN] = 1;
TYPE a[TM, TK] = checka ? *pa : 0;
TYPE b[TK, TN] = checkb ? *pb : 0;
/* ---------------- */
/* Inner Loop */
/* ---------------- */
// create result tile
float acc[TM, TN] = 0;
#ifdef DW
int step = TK;
#else
int step = 1;
#endif
for(int k = K; k > 0; k -= step) {
acc += a @ b;
// update pointers
#ifdef DW
int inc_a = TK * STRIDE_AK;
int inc_b = TK * STRIDE_BK;
#else
pinc += 1;
int inc_a = (*pinc) * TK * STRIDE_AK;
int inc_b = (*pinc) * TK * STRIDE_BK;
#endif
pa += inc_a;
pb += inc_b;
// pre-fetch
bool checka[TM, TK] = k > 1;
bool checkb[TK, TN] = k > 1;
a = *?(checka)pa;
b = *?(checkb)pb;
}
TYPE c[TM, TN] = acc;
/* ---------------- */
/* Epilogue */
/* ---------------- */
// initialize c pointers
int rcm[TM] = offm + (0 ... TM);
int rcn[TN] = offn + (0 ... TN);
TYPE* pc[TM, TN] = C + rcm[:, newaxis]*ldc + rcn[newaxis, :];
bool checkc[TM, TN] = rcm[:, newaxis] < M;
// write-back directly
if(lockid == 0) {
*?(checkc) pc = c;
}
// accumulate partial result using spin-locks
else {
int *plock = locks + get_program_id(0)*nlocks + lockid - 1;
int *pcount = plock + get_num_programs(0)*nlocks;
for(int repeat = 1; repeat == 1; repeat = atomic_cas(plock, 0, 1));
int count = *pcount;
if(count == 0)
*?(checkc) pc = c;
else
*?(checkc) pc = c + *?(checkc)pc;
atomic_xchg(pcount, (count + 1) % maxid);
atomic_xchg(plock, 0);
}
}
'''
# dictionaries for cached triton kernels
y_kernel = dict()
dx_kernel = dict()
dw_kernel = dict()
# Given an array sizes representing reduction size for each
# column of a block-sparse matrix multiplication,
# performs load-balancing to achieve more smaller reductions
# of size seg_size
@staticmethod
def load_balance(sizes, seg_size=8):
div = sizes // seg_size
rem = sizes % seg_size
packs = div + (rem != 0).long()
width = packs.sum()
# split reduction into segments
segments = torch.empty(width, dtype=sizes.dtype)
column = torch.empty_like(segments)
lockid = torch.zeros_like(segments)
maxid = torch.zeros_like(segments)
nlocks = 0
current = 0
col_idx = 0
for i in range(len(sizes)):
d, r = div[i], rem[i]
last = current + d + (r > 0)
# column id
column[current:last] = col_idx
# lock id
if d > 1 or (d == 1 and r > 0):
nlocks += 1
lockid[current:last] = nlocks
maxid[current:last] = last - current
# segment size
segments[current:current+d] = seg_size
if r > 0:
segments[current+d] = r
current = last
col_idx += 1
offsets = torch.zeros_like(segments)
offsets[1:] = torch.cumsum(segments[:-1], dim=0)
return segments, column, lockid, maxid, offsets
# Given a binary mask of 0s and 1s,
# Construct look-up table for efficient execution on GPUs
@staticmethod
def make_ydx_lut(mask, block_size):
# offsets in lookup table
sizes = torch.sum(mask, 0)
offsets = torch.zeros_like(sizes)
offsets[1:] = torch.cumsum(sizes[:-1], dim=0)
# load-balancing
segments, column, lockid, maxid, offsets = dot.load_balance(sizes)
# pointer increments
nnz = torch.nonzero(mask.T)
idx = nnz[:, 1]
incs = idx.clone()
incs[1:] -= idx[:-1]
incs[offsets] = idx[offsets]
# create header
width = column.size(0)
offsets += 5*width
header = torch.stack((offsets, segments, column, lockid, maxid), dim=1).view(-1).contiguous()
# create lut
lut = torch.cat((header, incs)).type(torch.int32).cuda()
# create locks
num_locks = max(1, lockid.max())
locks = torch.zeros((2*mask.size(0), num_locks), dtype=torch.int32).cuda()
return lut, locks, width
@staticmethod
def make_dw_lut(mask, depth, block_size):
nnz = torch.nonzero(mask)
# create lut
width = nnz.size(0)
i = nnz[:, 0]
j = nnz[:, 1]
lut = torch.stack((i, j), dim=1).view(-1).contiguous()
lut = lut.type(torch.int32).cuda()
# create locks
num_locks = 1
locks = torch.zeros((2*width, num_locks), dtype=torch.int32).cuda()
return lut, locks, width
@staticmethod
def forward(ctx, x, w, block_size,
y_lut, y_locks, y_width,
dx_lut, dx_locks, dx_width,
dw_lut, dw_locks, dw_width):
M, Kx = x.size()
Kw, N = w.size()
dtype = x.dtype
# memory strides
lda = Kx
ldb = N
ldc = N
# create kernel
key = (dtype, block_size)
if key not in dot.y_kernel:
defines = {'TM': 64, 'TN': block_size, 'TK': block_size, 'TYPE': dtype,
'STRIDE_AM': 'lda', 'STRIDE_AK': '1',
'STRIDE_BN': '1', 'STRIDE_BK': 'ldb'}
dot.y_kernel[key] = triton.kernel(dot.src, defines=defines)
kernel = dot.y_kernel[key]
# allocate output
y = torch.empty((M, N), dtype=dtype, device=x.device)
# launch kernel
grid = lambda opt: [triton.cdiv(M, opt.d('TM')), y_width]
kernel(x, w, y, lda, ldb, ldc, M, K, y_lut, y_locks, y_locks.size(1), grid=grid)
# save information in context
ctx.dx_width = dx_width
ctx.dw_width = dw_width
ctx.kernel = kernel
ctx.block_size = block_size
ctx.save_for_backward(x, w, dx_lut, dx_locks, dw_lut, dw_locks)
return y
@staticmethod
def backward(ctx, dy):
# retrieve information in context
x, w, dx_lut, dx_locks, dw_lut, dw_locks = ctx.saved_tensors
dx_width = ctx.dx_width
dw_width = ctx.dw_width
block_size = ctx.block_size
kernel = ctx.kernel
# shapes
M, N = dy.size()
_, K = x.size()
dtype = x.dtype
################
# input gradient
################
dx = None
if ctx.needs_input_grad[0]:
# create kernel
key = (dtype, block_size)
if key not in dot.dx_kernel:
defines = {'TM': 64, 'TN': block_size, 'TK': block_size, 'TYPE': dtype,
'STRIDE_AM': 'lda', 'STRIDE_AK': '1',
'STRIDE_BN': 'ldb', 'STRIDE_BK': '1'}
dot.dx_kernel[key] = triton.kernel(dot.src, defines=defines)
kernel = dot.dx_kernel[key]
# allocate output
dx = torch.empty_like(x)
# launch kernel
grid = lambda opt: [triton.cdiv(M, opt.d('TM')), dx_width]
kernel(dy, w, dx, N, N, K, M, N, dx_lut, dx_locks, dx_locks.size(1), grid=grid)
#################
# weight gradient
#################
dw = None
if ctx.needs_input_grad[1]:
# create kernel
key = (dtype, block_size)
if key not in dot.dw_kernel:
defines = {'TM': block_size, 'TN': block_size, 'TK': 8, 'TYPE': dtype,
'STRIDE_AM': '1', 'STRIDE_AK': 'lda',
'STRIDE_BN': '1', 'STRIDE_BK': 'ldb',
'DW': True, 'TZ': 2}
dot.dw_kernel[key] = triton.kernel(dot.src, defines=defines)
kernel = dot.dw_kernel[key]
# allocate output
dw = torch.zeros_like(w)
# launch kernel
grid = lambda opt: [dw_width, opt.d('TZ')]
kernel(x, dy, dw, K, N, N, K, M, dw_lut, dw_locks, dw_locks.size(1), grid=grid)
# done
return dx, dw, None,\
None, None, None,\
None, None, None,\
None, None, None
linear = _linear.apply
class Linear(torch.nn.Module):
def __init__(self, in_features, out_features, block_size, mask):
super(Linear, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = torch.nn.Parameter(torch.Tensor(out_features, in_features))
self.reset_parameter()
# create look-up tables
self.y_lut, self.y_locks, self.y_width = _linear.make_ydx_lut(mask, block_size)
self.dx_lut, self.dx_locks, self.dx_width = _linear.make_ydx_lut(mask.T, block_size)
self.dw_lut, self.dw_locks, self.dw_width = _linear.make_dw_lut(mask, M, block_size)
def reset_parameters(self):
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in)
init.uniform_(self.bias, -bound, bound)
def forward(self, input):
return linear(input, self.weight, self.block_size,
self.y_lut, self.y_locks, self.y_width,
self.dx_lut, self.dx_locks, self.dx_width,
self.dw_lut, self.dw_locks, self.dw_width)
def reference_dot(x, w, mask):
WS0, WS1 = w.size()
MS0, MS1 = mask.size()
assert WS0 % MS0 == 0
assert WS1 % MS1 == 0
block_size_0 = WS0 // MS0
block_size_1 = WS1 // MS1
assert block_size_0 == block_size_1
maskedw = w.clone()
for bi, wi in enumerate(range(0, WS0, block_size_0)):
for bj, wj in enumerate(range(0, WS1, block_size_1)):
maskedw[wi : wi+block_size_0,
wj : wj+block_size_1] *= mask[bi, bj]
return torch.matmul(x, maskedw)
torch.manual_seed(0)
# parameters
M, N, K = 256, 256, 256
BS = 16
# initialize inputs
mask = torch.randint(0, 2, (K//BS, N//BS))
x = torch.rand((M, K), dtype=torch.float32, requires_grad=True).cuda()
w = torch.rand((K, N), dtype=torch.float32, requires_grad=True).cuda()
x.retain_grad()
w.retain_grad()
# reference result
ry = reference_dot(x, w, mask)
dy = torch.rand_like(ry)
ry.backward(dy)
rdx = x.grad.clone()
rdw = w.grad.clone()
# reset gradients
x.grad.zero_()
w.grad.zero_()
# triton result
y_lut, y_locks, y_width = _linear.make_ydx_lut(mask, BS)
dx_lut, dx_locks, dx_width = _linear.make_ydx_lut(mask.T, BS)
dw_lut, dw_locks, dw_width = _linear.make_dw_lut(mask, M, BS)
ty = _linear.apply(x, w, BS,
y_lut, y_locks, y_width,
dx_lut, dx_locks, dx_width,
dw_lut, dw_locks, dw_width)
ty.backward(dy)
tdx = x.grad.clone()
tdw = w.grad.clone()
# test
print((ty - ry).abs().max())
print((tdx - rdx).abs().max())
print((tdw - rdw).abs().max())