[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-02-24 00:41:01 +00:00
parent 88ffe73184
commit 9ff187eb68
158 changed files with 290 additions and 290 deletions

View File

@@ -324,7 +324,7 @@ for different problem sizes.</p>
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 63.999998 63.999998
3 32768.0 76.800002 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 384.000001 384.000001
@@ -339,7 +339,7 @@ for different problem sizes.</p>
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 46.577 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 45.106 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,15 +374,15 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 188.321838
0 256.0 512.000001 546.133347 190.511628
1 384.0 585.142862 585.142862 153.600004
2 512.0 655.360017 606.814814 154.566038
3 640.0 682.666684 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 812.359066 405.333344 198.834951
94 12288.0 814.111783 415.661740 199.096718
95 12416.0 812.498981 411.296057 198.755369
93 12160.0 814.058574 405.755985 198.834951
94 12288.0 814.111783 415.661740 198.995960
95 12416.0 812.498981 411.722274 198.755369
96 12544.0 812.566838 412.971190 198.913776
97 12672.0 812.633240 412.097543 199.069228
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 23.717 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 23.481 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -569,41 +569,41 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 2.978909 2.978909
1 384.0 7.372800 ... 7.899428 7.899428
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 35.389441 34.028308
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 51.150050 ... 53.773130 52.428801
7 1152.0 45.242181 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.888887
9 1408.0 64.138541 ... 67.305878 67.305878
10 1536.0 80.430545 ... 79.526831 79.526831
11 1664.0 62.929456 ... 62.492442 62.061463
12 1792.0 72.512412 ... 72.512412 71.588687
13 1920.0 68.776119 ... 70.172588 70.172588
14 2048.0 73.584279 ... 76.608294 76.608294
15 2176.0 83.155572 ... 85.998493 85.632545
16 2304.0 68.446623 ... 77.057651 76.563695
17 2432.0 71.305746 ... 85.134737 83.614477
18 2560.0 77.833728 ... 81.108913 80.313727
19 2688.0 83.369354 ... 89.044730 88.216412
20 2816.0 82.916747 ... 83.074685 83.074685
21 2944.0 80.640830 ... 82.509987 81.832567
22 3072.0 82.301023 ... 88.473602 88.335577
23 3200.0 83.769634 ... 95.380032 94.955488
24 3328.0 83.130825 ... 84.298943 83.613586
25 3456.0 81.271743 ... 91.304157 85.676480
26 3584.0 85.552231 ... 89.557167 94.548254
27 3712.0 85.601834 ... 86.716441 86.905039
28 3840.0 79.305843 ... 84.419358 91.587578
29 3968.0 85.932350 ... 91.062642 85.660888
30 4096.0 93.206754 ... 86.369197 85.325956
9 1408.0 64.138541 ... 67.305878 66.485074
10 1536.0 79.526831 ... 79.526831 78.643199
11 1664.0 62.929456 ... 62.061463 62.061463
12 1792.0 72.512412 ... 72.047592 71.588687
13 1920.0 68.776119 ... 69.994940 70.172588
14 2048.0 73.908442 ... 76.608294 76.260072
15 2176.0 83.155572 ... 85.632545 85.269692
16 2304.0 68.446623 ... 76.809875 76.563695
17 2432.0 71.305746 ... 83.119713 84.877538
18 2560.0 78.019048 ... 80.709358 80.908642
19 2688.0 83.186525 ... 89.676257 89.254248
20 2816.0 83.233226 ... 83.552120 83.233226
21 2944.0 82.237674 ... 82.237674 82.102191
22 3072.0 81.943708 ... 87.381335 86.845249
23 3200.0 84.768213 ... 95.025983 94.674553
24 3328.0 83.034941 ... 82.181847 82.939284
25 3456.0 81.600781 ... 89.579522 91.097818
26 3584.0 87.211821 ... 89.918204 95.654673
27 3712.0 85.748791 ... 86.641231 86.942857
28 3840.0 81.079177 ... 91.701494 86.063813
29 3968.0 92.407370 ... 78.170362 84.504108
30 4096.0 86.426548 ... 86.536250 89.478485
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 34.643 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 48.488 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -371,7 +371,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.011 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.114 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -194,36 +194,36 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 311.088617 99.497980 311.088617
1 1536.0 351.085717 133.083026 344.523365
2 2048.0 427.408686 158.554837 332.108094
3 2560.0 461.954908 182.857144 328.556154
4 3072.0 519.211251 191.999993 320.556515
0 1024.0 311.088617 99.902435 311.088617
1 1536.0 354.461542 133.083026 341.333333
2 2048.0 427.408686 158.554837 321.254900
3 2560.0 461.954908 182.857144 323.368411
4 3072.0 515.580429 191.999993 319.168834
5 3584.0 551.384634 208.271186 309.410081
6 4096.0 568.231237 220.412561 298.796351
7 4608.0 498.162157 232.825259 287.251954
8 5120.0 529.655159 244.294240 286.433562
9 5632.0 540.671974 245.313973 291.939522
10 6144.0 548.163546 251.202731 288.000001
11 6656.0 536.053693 255.590406 286.279570
6 4096.0 568.231237 219.919464 299.707322
7 4608.0 500.416301 232.825259 287.251954
8 5120.0 529.655159 243.809526 289.811322
9 5632.0 540.671974 244.869560 291.310338
10 6144.0 548.163546 251.631408 288.000001
11 6656.0 534.260858 256.000009 286.279570
12 7168.0 516.612607 254.485198 278.820105
13 7680.0 487.619051 266.743841 284.884090
14 8192.0 467.002371 257.003920 276.912679
15 8704.0 415.300208 267.815384 286.158893
16 9216.0 430.319054 273.742580 289.887291
17 9728.0 438.857162 280.615388 289.667485
18 10240.0 447.650282 287.102804 290.496460
19 10752.0 433.694125 246.699797 289.616170
20 11264.0 429.104745 246.432094 286.980888
14 8192.0 468.114289 257.003920 276.912679
15 8704.0 416.958106 267.815384 285.767450
16 9216.0 430.319054 274.081793 289.887291
17 9728.0 439.683593 280.278512 289.308559
18 10240.0 446.025405 287.102804 290.153487
19 10752.0 430.797982 246.699797 289.291486
20 11264.0 429.104745 246.656943 286.980888
21 11776.0 422.457417 250.109737 288.981596
22 12288.0 418.909088 254.893699 294.617366
23 12800.0 414.574901 253.674644 288.721817
24 13312.0 411.711355 252.559690 289.391298
25 13824.0 406.090579 257.390218 292.056329
26 14336.0 396.387109 255.619613 289.129416
27 14848.0 386.080180 257.108233 287.844912
28 15360.0 374.634130 258.332158 288.450715
29 15872.0 367.691129 261.986243 290.341468
22 12288.0 419.504980 254.893699 294.323369
23 12800.0 414.574901 254.094291 288.993430
24 13312.0 413.309181 252.759501 289.653667
25 13824.0 407.587209 257.390218 292.056329
26 14336.0 395.930964 255.429842 288.644296
27 14848.0 386.918555 257.293872 287.380642
28 15360.0 375.015246 258.513318 286.656296
29 15872.0 368.046389 261.267482 289.679087
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 12.765 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 12.791 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>12:57.713</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>13:09.980</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,23 +183,23 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:34.643</p></td>
<td><p>05:48.488</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:23.717</p></td>
<td><p>03:23.481</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:12.765</p></td>
<td><p>02:12.791</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:46.577</p></td>
<td><p>01:45.106</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.011</p></td>
<td><p>00:00.114</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>