[DOCS] Made documentation consistent with the new kernel API

This commit is contained in:
Philippe Tillet
2020-03-10 13:25:57 -04:00
committed by Philippe Tillet
parent eadaeab299
commit a5e3397e6e
3 changed files with 6 additions and 12 deletions

View File

@@ -57,7 +57,8 @@ As you will see, a wrapper for the above Triton function can be created in just
}
"""
# create callable kernel for the source-code
kernel = triton.kernel(src)
# options: 4 warps and a -DTILE=1024
kernel = triton.kernel(src, defines = {'TILE': 1024}; num_warps = [4])
# Forward pass
@staticmethod
@@ -72,11 +73,7 @@ As you will see, a wrapper for the above Triton function can be created in just
N = x.numel()
grid = lambda opt: (triton.cdiv(N, opt.d('TILE')), )
# launch kernel
# options: 4 warps and a -DTILE=1024
_add.kernel(z, x, y, N,
grid = grid,
num_warps = 4,
defines = {'TILE': 1024})
_add.kernel(z, x, y, N, grid = grid)
# return output
return z

View File

@@ -8,4 +8,3 @@ Tutorials
triton-vs-cuda
matrix-transposition
matrix-multiplication
putting-it-all-together

View File

@@ -98,11 +98,9 @@ Now assume that you want to tune the above code for different data types, tile s
.. code-block:: python
_vector_add.kernel(y, x, N, grid=grid,
defines={'TILE': [256, 512, 1024]},
num_warps = [2, 4, 8])
kernel = triton.kernel(src, defines = {'TILE': [256, 512, 1024]}, num_warps = [2, 4, 8])
would benchmark our above triton-code for tile sizes of 256, 512 and 1024 executed with 2, 4 or 8 warps -- and cache the fastest kernel.
would benchmark our above triton source-code for tile sizes of 256, 512 and 1024 executed with 2, 4 or 8 warps -- and cache the fastest kernel.
=============================
Going Further