[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-02-27 00:41:54 +00:00
parent 3a6c779d62
commit a64f41ab97
158 changed files with 264 additions and 264 deletions

View File

@@ -324,7 +324,7 @@ for different problem sizes.</p>
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 63.999998 76.800002
3 32768.0 63.999998 63.999998
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 384.000001
@@ -334,12 +334,12 @@ for different problem sizes.</p>
10 4194304.0 780.190482 780.190482
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
13 33554432.0 842.004273 842.004273
13 33554432.0 842.004273 843.811163
14 67108864.0 847.448255 848.362445
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 47.018 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 42.564 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,15 +374,15 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 186.181817
0 256.0 512.000001 546.133347 188.321838
1 384.0 585.142862 585.142862 153.600004
2 512.0 655.360017 606.814814 154.566038
3 640.0 682.666684 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 814.058574 406.179533 198.834951
94 12288.0 814.111783 415.222812 199.197579
95 12416.0 812.498981 412.577363 198.755369
94 12288.0 814.111783 415.661740 199.197579
95 12416.0 812.498981 412.149375 198.755369
96 12544.0 812.566838 412.971190 198.913776
97 12672.0 812.633240 412.097543 199.069228
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 23.286 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 23.367 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -568,42 +568,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 3.276800 3.276800
0 256.0 2.978909 ... 3.276800 2.978909
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 49.932191 ... 53.773130 52.428801
6 1024.0 51.150050 ... 53.773130 52.428801
7 1152.0 45.242181 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.888887
8 1280.0 51.200001 ... 56.888887 56.109587
9 1408.0 64.138541 ... 67.305878 67.305878
10 1536.0 80.430545 ... 79.526831 78.643199
11 1664.0 62.929456 ... 62.929456 62.061463
12 1792.0 72.983276 ... 72.512412 72.047592
11 1664.0 62.929456 ... 62.492442 62.061463
12 1792.0 72.512412 ... 72.047592 71.588687
13 1920.0 68.776119 ... 70.172588 70.172588
14 2048.0 73.584279 ... 76.959706 76.260072
15 2176.0 83.155572 ... 85.632545 85.269692
14 2048.0 73.584279 ... 76.608294 76.959706
15 2176.0 83.500614 ... 85.632545 84.909907
16 2304.0 68.446623 ... 76.809875 76.076024
17 2432.0 71.305746 ... 85.393507 84.877538
18 2560.0 78.019048 ... 81.108913 80.709358
19 2688.0 83.369354 ... 89.676257 89.464755
20 2816.0 83.552120 ... 83.074685 82.602666
21 2944.0 81.832567 ... 81.564701 81.431424
22 3072.0 82.062468 ... 88.335577 86.579673
23 3200.0 83.769634 ... 91.690542 92.352095
24 3328.0 79.111314 ... 84.596116 84.695641
25 3456.0 82.773682 ... 90.281712 90.994998
26 3584.0 84.033077 ... 91.563533 96.631267
27 3712.0 85.455380 ... 89.114488 87.514102
28 3840.0 84.874902 ... 91.511791 88.473602
29 3968.0 92.512459 ... 78.320884 84.504108
30 4096.0 88.243079 ... 85.324258 92.820009
17 2432.0 71.125224 ... 85.134737 84.115159
18 2560.0 78.019048 ... 80.709358 80.313727
19 2688.0 83.552988 ... 89.464755 88.836198
20 2816.0 82.290955 ... 83.233226 82.602666
21 2944.0 82.102191 ... 82.646820 82.646820
22 3072.0 81.825298 ... 88.197981 88.060814
23 3200.0 84.656085 ... 95.238096 94.674553
24 3328.0 83.034941 ... 82.275764 81.162679
25 3456.0 81.683457 ... 89.579522 91.200871
26 3584.0 87.127323 ... 90.458141 94.548254
27 3712.0 85.455380 ... 88.092894 91.481080
28 3840.0 82.041542 ... 87.148936 91.097196
29 3968.0 85.869991 ... 90.522206 87.913500
30 4096.0 92.755862 ... 81.991628 90.018600
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 24.923 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 27.871 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -371,7 +371,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.010 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.011 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -194,36 +194,36 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 311.088617 98.303995 303.407414
1 1536.0 351.085717 134.540150 341.333333
2 2048.0 423.724127 161.684218 325.509933
3 2560.0 465.454542 181.775141 326.808501
4 3072.0 515.580429 192.501302 317.793096
5 3584.0 551.384634 208.271186 310.527060
6 4096.0 571.534884 220.412561 295.207204
7 4608.0 500.416301 232.825259 291.031570
8 5120.0 527.381977 242.845844 287.775181
9 5632.0 542.843364 243.545956 289.438969
10 6144.0 546.133354 248.661056 286.322318
0 1024.0 307.200008 98.303995 303.407414
1 1536.0 351.085717 134.050910 341.333333
2 2048.0 423.724127 161.684218 334.367350
3 2560.0 465.454542 181.238943 328.556154
4 3072.0 511.999982 191.999993 320.556515
5 3584.0 551.384634 207.768111 310.527060
6 4096.0 568.231237 220.412561 298.796351
7 4608.0 498.162157 232.825259 287.251954
8 5120.0 527.381977 242.845844 285.104413
9 5632.0 540.671974 243.107920 290.683877
10 6144.0 544.118087 248.242431 286.322318
11 6656.0 532.479975 256.000009 285.767438
12 7168.0 507.469040 260.260201 286.242939
13 7680.0 479.999983 262.564106 279.272719
14 8192.0 462.607053 267.130429 284.526763
15 8704.0 416.958106 267.472468 284.599455
16 9216.0 429.483477 272.729961 288.751954
17 9728.0 437.213490 280.278512 290.027323
18 10240.0 449.287041 286.433562 290.153487
19 10752.0 429.364408 246.935876 290.922209
20 11264.0 429.104745 245.760001 286.676558
12 7168.0 507.469040 260.654538 286.242939
13 7680.0 479.999983 262.190612 274.694491
14 8192.0 463.698115 266.767970 284.939124
15 8704.0 416.958106 267.472468 284.212242
16 9216.0 429.483477 272.059034 288.751954
17 9728.0 437.213490 280.615388 289.667485
18 10240.0 449.287041 286.433562 287.438599
19 10752.0 428.651173 247.172406 290.922209
20 11264.0 429.104745 245.536784 286.980888
21 11776.0 423.724129 249.667843 288.981596
22 12288.0 420.102570 254.673582 294.323369
23 12800.0 414.574901 253.465340 288.180121
24 13312.0 411.711355 252.959629 289.916513
25 13824.0 405.098897 257.190689 292.056329
23 12800.0 414.574901 253.256381 289.538159
24 13312.0 411.711355 252.559690 289.916513
25 13824.0 405.098897 257.390218 292.056329
26 14336.0 395.021816 254.297107 286.719986
27 14848.0 385.662341 257.665934 289.246765
28 15360.0 373.874218 257.970599 286.211174
29 15872.0 369.832994 261.626369 289.899545
28 15360.0 373.874218 257.790220 287.102804
29 15872.0 369.832994 261.806182 289.899545
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 12.848 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 13.380 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>12:48.085</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>12:47.192</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,19 +183,19 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:24.923</p></td>
<td><p>05:27.871</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:23.286</p></td>
<td><p>03:23.367</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:12.848</p></td>
<td><p>02:13.380</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:47.018</p></td>
<td><p>01:42.564</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>