[STYLE] add isort and autopep8 config files and check on CI (#423)
Also a fix a few more style issues from the "aggressive" mode of autopep8.
This commit is contained in:
committed by
GitHub
parent
9801aa7b56
commit
a70acfec77
6
.github/workflows/integration-tests.yml
vendored
6
.github/workflows/integration-tests.yml
vendored
@@ -30,6 +30,12 @@ jobs:
|
||||
cd python
|
||||
pip3 install -e '.[tests]'
|
||||
|
||||
- name: Check imports
|
||||
run: "isort -c ./python || ( echo '::error title=Imports not sorted::Please run \"isort ./python\"' ; exit 1 )"
|
||||
|
||||
- name: Check style
|
||||
run: "autopep8 -a -r -d --exit-code ./python || ( echo '::error title=Style issues::Please run \"autopep8 -a -r -i ./python\"' ; exit 1 )"
|
||||
|
||||
- name: Unit tests
|
||||
run: |
|
||||
cd python/test/unit
|
||||
|
4
.isort.cfg
Normal file
4
.isort.cfg
Normal file
@@ -0,0 +1,4 @@
|
||||
[settings]
|
||||
known_local_folder=triton
|
||||
line_length=88
|
||||
py_version=36
|
@@ -1,2 +1,5 @@
|
||||
[metadata]
|
||||
description_file = README.md
|
||||
|
||||
[pycodestyle]
|
||||
ignore = E501,E701,E731
|
||||
|
@@ -94,7 +94,7 @@ class CMakeBuild(build_ext):
|
||||
"-DBUILD_PYTHON_MODULE=ON",
|
||||
"-DLLVM_INCLUDE_DIRS=" + llvm_include_dir,
|
||||
"-DLLVM_LIBRARY_DIR=" + llvm_library_dir,
|
||||
#'-DPYTHON_EXECUTABLE=' + sys.executable,
|
||||
# '-DPYTHON_EXECUTABLE=' + sys.executable,
|
||||
# '-DCMAKE_VERBOSE_MAKEFILE:BOOL=ON',
|
||||
"-DTRITON_LLVM_BUILD_DIR=" + llvm_build_dir,
|
||||
"-DPYTHON_INCLUDE_DIRS=" + ";".join(python_include_dirs)
|
||||
@@ -148,6 +148,8 @@ setup(
|
||||
],
|
||||
extras_require={
|
||||
"tests": [
|
||||
"autopep8",
|
||||
"isort",
|
||||
"numpy",
|
||||
"pytest",
|
||||
"scipy>=1.7.1",
|
||||
|
@@ -1,4 +1,3 @@
|
||||
import triton.language as tl
|
||||
import subprocess
|
||||
import sys
|
||||
|
||||
@@ -7,6 +6,7 @@ import torch
|
||||
from numpy import record
|
||||
|
||||
import triton
|
||||
import triton.language as tl
|
||||
|
||||
#######################
|
||||
# Utilities
|
||||
|
@@ -1,4 +1,4 @@
|
||||
# version
|
||||
"""isort:skip_file"""
|
||||
__version__ = '2.0.0'
|
||||
|
||||
# TODO: torch needs to be imported first
|
||||
|
@@ -852,7 +852,7 @@ class Autotuner:
|
||||
else:
|
||||
config = self.configs[0]
|
||||
self.best_config = config
|
||||
if config.pre_hook != None:
|
||||
if config.pre_hook is not None:
|
||||
config.pre_hook(self.nargs)
|
||||
return self.kernel(*args, num_warps=config.num_warps, num_stages=config.num_stages, **kwargs, **config.kwargs)
|
||||
|
||||
|
@@ -293,7 +293,7 @@ class block:
|
||||
dst_shape = []
|
||||
curr = 0
|
||||
for sl in slices:
|
||||
if sl == None:
|
||||
if sl is None:
|
||||
dst_shape.append(1)
|
||||
elif sl == slice(None, None, None):
|
||||
dst_shape.append(src_shape[curr])
|
||||
|
@@ -26,9 +26,9 @@ def _sdd_kernel(
|
||||
TILE_M: tl.constexpr, TILE_N: tl.constexpr, TILE_K: tl.constexpr,
|
||||
BLOCK: tl.constexpr, EVEN_K: tl.constexpr
|
||||
):
|
||||
#------------#
|
||||
#- Prologue -#
|
||||
#------------#
|
||||
# ------------ #
|
||||
# - Prologue - #
|
||||
# ------------ #
|
||||
block_id = tl.program_id(1) + grid_offset
|
||||
lut += block_id * 3
|
||||
# offsets
|
||||
@@ -39,21 +39,23 @@ def _sdd_kernel(
|
||||
start_am = tl.load(lut + 1)
|
||||
offs_am = start_am * BLOCK + (tl.arange(0, TILE_M) % BLOCK)
|
||||
offs_ak = tl.arange(0, TILE_K)
|
||||
a_ptrs = A + (off_z * stride_za
|
||||
+ off_h * stride_ha
|
||||
+ offs_am[:, None] * stride_ma
|
||||
+ offs_ak[None, :] * stride_ak)
|
||||
a_ptrs = A \
|
||||
+ off_z * stride_za \
|
||||
+ off_h * stride_ha \
|
||||
+ offs_am[:, None] * stride_ma \
|
||||
+ offs_ak[None, :] * stride_ak
|
||||
# initialize pointers to B
|
||||
start_bn = tl.load(lut + 2)
|
||||
offs_bn = start_bn * BLOCK + (tl.arange(0, TILE_N) % BLOCK)
|
||||
offs_bk = tl.arange(0, TILE_K)
|
||||
b_ptrs = B + (off_z * stride_zb
|
||||
+ off_h * stride_hb
|
||||
+ offs_bn[None, :] * stride_nb
|
||||
+ offs_bk[:, None] * stride_bk)
|
||||
## ---------------- ##
|
||||
## Inner Loop ##
|
||||
## ---------------- ##
|
||||
b_ptrs = B \
|
||||
+ off_z * stride_zb \
|
||||
+ off_h * stride_hb \
|
||||
+ offs_bn[None, :] * stride_nb \
|
||||
+ offs_bk[:, None] * stride_bk
|
||||
# ---------------- #
|
||||
# Inner Loop #
|
||||
# ---------------- #
|
||||
acc = tl.zeros((TILE_M, TILE_N), dtype=tl.float32)
|
||||
for k in range(K, 0, -TILE_K):
|
||||
if EVEN_K:
|
||||
@@ -66,15 +68,16 @@ def _sdd_kernel(
|
||||
a_ptrs += TILE_K * stride_ak
|
||||
b_ptrs += TILE_K * stride_bk
|
||||
c = acc.to(C.dtype.element_ty)
|
||||
## ---------------- ##
|
||||
## Epilogue ##
|
||||
## ---------------- ##
|
||||
# ---------------- #
|
||||
# Epilogue #
|
||||
# ---------------- #
|
||||
offs_cm = tl.arange(0, TILE_M) % BLOCK
|
||||
offs_cn = tl.arange(0, TILE_N) % BLOCK
|
||||
pc = C + (off_z * stride_zc
|
||||
+ block_id * stride_hc
|
||||
+ offs_cm[:, None] * stride_mc
|
||||
+ offs_cn[None, :] * stride_nc)
|
||||
pc = C \
|
||||
+ off_z * stride_zc \
|
||||
+ block_id * stride_hc \
|
||||
+ offs_cm[:, None] * stride_mc \
|
||||
+ offs_cn[None, :] * stride_nc
|
||||
tl.store(pc, c, mask=True)
|
||||
|
||||
|
||||
@@ -134,9 +137,9 @@ def _dsd_kernel(
|
||||
TILE_M: tl.constexpr, TILE_N: tl.constexpr, TILE_K: tl.constexpr,
|
||||
GROUP_SIZE_M: tl.constexpr, BLOCK: tl.constexpr
|
||||
):
|
||||
#------------#
|
||||
#- Prologue -#
|
||||
#------------#
|
||||
# ------------ #
|
||||
# - Prologue - #
|
||||
# ------------ #
|
||||
pid_m = tl.program_id(0)
|
||||
pid_n = tl.program_id(1)
|
||||
num_pid_m = tl.num_programs(0)
|
||||
@@ -168,9 +171,9 @@ def _dsd_kernel(
|
||||
+ off_h * stride_hb \
|
||||
+ offs_bn[None, :] * stride_bn \
|
||||
+ offs_bk[:, None] * stride_bk
|
||||
## ---------------- ##
|
||||
## Inner Loop ##
|
||||
## ---------------- ##
|
||||
# ---------------- #
|
||||
# Inner Loop #
|
||||
# ---------------- #
|
||||
acc = tl.zeros((TILE_M, TILE_N), dtype=tl.float32)
|
||||
pinc += 2
|
||||
inc_a = tl.load(pinc + 1)
|
||||
@@ -192,7 +195,8 @@ def _dsd_kernel(
|
||||
# initialize pointers to C
|
||||
offs_cm = column * TILE_M + tl.arange(0, TILE_M)
|
||||
offs_cn = pid_m * TILE_N + tl.arange(0, TILE_N)
|
||||
pc = C + off_h * stride_hc \
|
||||
pc = C \
|
||||
+ off_h * stride_hc \
|
||||
+ pidz * stride_zc \
|
||||
+ offs_cm[:, None] * stride_cm \
|
||||
+ offs_cn[None, :] * stride_cn
|
||||
@@ -224,24 +228,24 @@ def dsd_matmul(a, b, trans_a, trans_b, trans_c, spdims, block, lut, width, out=N
|
||||
TILE_N = 128
|
||||
# compute output
|
||||
grid = lambda meta: [triton.cdiv(BS3, meta['TILE_N']), width, BS0]
|
||||
# fmt: off
|
||||
_dsd_kernel[grid](
|
||||
a, b, c,
|
||||
a.stride(0), a.stride(1), a.stride(3 if trans_a else 2), a.stride(2 if trans_a else 3),
|
||||
b.stride(0), b.stride(1), b.stride(3 if trans_b else 2), b.stride(2 if trans_b else 3),
|
||||
c.stride(0), c.stride(1), c.stride(3 if trans_c else 2), c.stride(2 if trans_c else 3),
|
||||
BS3, AS1, lut,
|
||||
TILE_M = block, TILE_N=TILE_N, TILE_K = min(block, 32), BLOCK = block, num_stages=4,
|
||||
TILE_M=block, TILE_N=TILE_N, TILE_K=min(block, 32), BLOCK=block, num_stages=4,
|
||||
num_warps=4, GROUP_SIZE_M=4,
|
||||
)
|
||||
# exit()
|
||||
return c
|
||||
|
||||
|
||||
def dsd_lut(layout, block, step, trans, device):
|
||||
sizes = torch.sum(layout, 2 if trans else 1)
|
||||
head_id, col_id = sizes.nonzero(as_tuple=True)
|
||||
sizes = sizes.flatten()
|
||||
segments = sizes*step
|
||||
segments = sizes * step
|
||||
# pointer increments
|
||||
if trans:
|
||||
nnz = layout.nonzero(as_tuple=False)
|
||||
@@ -301,13 +305,13 @@ def dsd_lut(layout, block, step, trans, device):
|
||||
A_incs[offsets[segments > 0], 0] = A_idx[offsets[segments > 0]]
|
||||
A_incs = A_incs.view(-1)
|
||||
# create header
|
||||
width = col_id.size(0)
|
||||
offsets = offsets*2*div + 4*width
|
||||
segments = segments*div
|
||||
header = torch.stack((offsets, segments, col_id, head_id), dim=1).view(-1).contiguous()
|
||||
width = col_id.size(0)
|
||||
offsets = offsets * 2 * div + 4 * width
|
||||
segments = segments * div
|
||||
header = torch.stack((offsets, segments, col_id, head_id), dim=1).view(-1).contiguous()
|
||||
# create increments
|
||||
incs = torch.stack((B_incs, A_incs), dim=1).view(-1).contiguous()
|
||||
incs = torch.cat((incs, torch.zeros(2, device=incs.device, dtype=incs.dtype)))
|
||||
incs = torch.stack((B_incs, A_incs), dim=1).view(-1).contiguous()
|
||||
incs = torch.cat((incs, torch.zeros(2, device=incs.device, dtype=incs.dtype)))
|
||||
# create lut
|
||||
lut = torch.cat((header, incs))
|
||||
lut = lut.type(torch.int32).to(device)
|
||||
@@ -317,6 +321,8 @@ def dsd_lut(layout, block, step, trans, device):
|
||||
# -----------------------------
|
||||
# Dense = Dense x Sparse (DDS)
|
||||
# -----------------------------
|
||||
|
||||
|
||||
@triton.jit
|
||||
def _dds_kernel(
|
||||
A, B, C,
|
||||
@@ -327,9 +333,9 @@ def _dds_kernel(
|
||||
TILE_M: tl.constexpr, TILE_N: tl.constexpr, TILE_K: tl.constexpr,
|
||||
GROUP_SIZE_M: tl.constexpr, BLOCK: tl.constexpr,
|
||||
):
|
||||
#------------#
|
||||
#- Prologue -#
|
||||
#------------#
|
||||
# ------------ #
|
||||
# - Prologue - #
|
||||
# ------------ #
|
||||
pid_m = tl.program_id(0)
|
||||
pid_n = tl.program_id(1)
|
||||
num_pid_m = tl.num_programs(0)
|
||||
@@ -343,31 +349,31 @@ def _dds_kernel(
|
||||
off_h = tl.load(header + 3)
|
||||
pinc = lut + offset
|
||||
# initialize pointers to A (dense)
|
||||
offs_am = pid_m*TILE_M + tl.arange(0, TILE_M)
|
||||
offs_am = pid_m * TILE_M + tl.arange(0, TILE_M)
|
||||
offs_am = tl.max_contiguous(tl.multiple_of(offs_am % DS0, TILE_M), TILE_M)
|
||||
start_ak = tl.load(pinc)
|
||||
start_ak = tl.multiple_of(start_ak, 8)
|
||||
offs_ak = start_ak + tl.arange(0, TILE_K)
|
||||
ptrs_a = A + pid_z * stride_za \
|
||||
+ off_h * stride_ha \
|
||||
+ offs_am[:, None] * stride_ma \
|
||||
+ offs_ak[None, :] * stride_ka
|
||||
+ off_h * stride_ha \
|
||||
+ offs_am[:, None] * stride_ma \
|
||||
+ offs_ak[None, :] * stride_ka
|
||||
# initialize pointers to B (sparse)
|
||||
block_id = tl.load(pinc + 1)
|
||||
block_id = tl.multiple_of(block_id, 8)
|
||||
offs_bn = tl.arange(0, TILE_N)
|
||||
offs_bk = tl.arange(0, TILE_K)
|
||||
ptrs_b = B + pid_z * stride_zb \
|
||||
+ block_id * stride_hb \
|
||||
+ offs_bn[None, :] * stride_bn \
|
||||
+ offs_bk[:, None] * stride_bk
|
||||
## ---------------- ##
|
||||
## Inner Loop ##
|
||||
## ---------------- ##
|
||||
+ block_id * stride_hb \
|
||||
+ offs_bn[None, :] * stride_bn \
|
||||
+ offs_bk[:, None] * stride_bk
|
||||
# ---------------- #
|
||||
# Inner Loop #
|
||||
# ---------------- #
|
||||
acc = tl.zeros((TILE_M, TILE_N), dtype=tl.float32)
|
||||
for k in range(AS1, 0, -TILE_K):
|
||||
a = tl.load(ptrs_a, mask = offs_am[:, None] < DS0)
|
||||
b = tl.load(ptrs_b, mask = True)
|
||||
a = tl.load(ptrs_a, mask=offs_am[:, None] < DS0)
|
||||
b = tl.load(ptrs_b, mask=True)
|
||||
acc += tl.dot(a, b)
|
||||
pinc += 2
|
||||
inc_a = tl.load(pinc)
|
||||
@@ -377,21 +383,22 @@ def _dds_kernel(
|
||||
inc_a = inc_a * stride_ka
|
||||
ptrs_a += inc_a
|
||||
ptrs_b += inc_b
|
||||
## ---------------- ##
|
||||
## Epilogue ##
|
||||
## ---------------- ##
|
||||
# ---------------- #
|
||||
# Epilogue #
|
||||
# ---------------- #
|
||||
c = acc.to(C.dtype.element_ty)
|
||||
# initialize pointers to C (dense)
|
||||
offs_cm = pid_m * TILE_M + tl.arange(0, TILE_M)
|
||||
offs_cn = column * TILE_N + tl.arange(0, TILE_N)
|
||||
ptrs_c = C + off_h * stride_hc \
|
||||
+ pid_z * stride_zc \
|
||||
+ offs_cm[:, None] * stride_mc \
|
||||
+ offs_cn[None, :] * stride_nc
|
||||
+ pid_z * stride_zc \
|
||||
+ offs_cm[:, None] * stride_mc \
|
||||
+ offs_cn[None, :] * stride_nc
|
||||
# write back
|
||||
tl.store(ptrs_c, c, mask = offs_cm[:, None] < DS0)
|
||||
tl.store(ptrs_c, c, mask=offs_cm[:, None] < DS0)
|
||||
|
||||
def dds_matmul(a, b, trans_a, trans_b, trans_c, spdims, block, lut, width, out = None):
|
||||
|
||||
def dds_matmul(a, b, trans_a, trans_b, trans_c, spdims, block, lut, width, out=None):
|
||||
if a.stride(2) != 1 and a.stride(3) != 1:
|
||||
a = a.contiguous()
|
||||
if b.stride(2) != 1 and b.stride(3) != 1:
|
||||
@@ -414,14 +421,13 @@ def dds_matmul(a, b, trans_a, trans_b, trans_c, spdims, block, lut, width, out =
|
||||
c = out
|
||||
TILE_M = {16: 256, 32: 256, 64: 128, 128: 128}[block]
|
||||
grid = lambda meta: [triton.cdiv(AS2, meta['TILE_M']), width, AS0]
|
||||
# fmt: off
|
||||
_dds_kernel[grid](
|
||||
a, b, c,
|
||||
a.stride(0), a.stride(1), a.stride(3 if trans_a else 2), a.stride(2 if trans_a else 3),
|
||||
b.stride(0), b.stride(1), b.stride(3 if trans_b else 2), b.stride(2 if trans_b else 3),
|
||||
c.stride(0), c.stride(1), c.stride(3 if trans_c else 2), c.stride(2 if trans_c else 3),
|
||||
AS2, BS2, lut,
|
||||
TILE_M = TILE_M, TILE_N = block, TILE_K = min(block, 32), BLOCK = block, num_stages=4,
|
||||
TILE_M=TILE_M, TILE_N=block, TILE_K=min(block, 32), BLOCK=block, num_stages=4,
|
||||
num_warps=4, GROUP_SIZE_M=4,
|
||||
)
|
||||
return c
|
||||
@@ -429,6 +435,8 @@ def dds_matmul(a, b, trans_a, trans_b, trans_c, spdims, block, lut, width, out =
|
||||
##############
|
||||
# MAIN API #
|
||||
##############
|
||||
|
||||
|
||||
class _matmul(torch.autograd.Function):
|
||||
|
||||
fn = {'sdd': sdd_matmul, 'dsd': dsd_matmul, 'dds': dds_matmul}
|
||||
@@ -474,8 +482,9 @@ class _matmul(torch.autograd.Function):
|
||||
)
|
||||
dout = dc if ctx.has_out else None
|
||||
return da, db, None, None, None,\
|
||||
None, None, None, None,\
|
||||
None, None, None, None, None, dout
|
||||
None, None, None, None,\
|
||||
None, None, None, None, None, dout
|
||||
|
||||
|
||||
class matmul:
|
||||
|
||||
@@ -499,11 +508,11 @@ class matmul:
|
||||
self.da_lut, self.da_width = sdd_lut(layout, block, device)
|
||||
self.db_lut, self.db_width = dsd_lut(layout, block, step, self.trans_a, device)
|
||||
if self.mode == 'dds':
|
||||
self.c_lut, self.c_width = dsd_lut(layout, block, step, self.trans_b, device)
|
||||
self.c_lut, self.c_width = dsd_lut(layout, block, step, self.trans_b, device)
|
||||
self.da_lut, self.da_width = dsd_lut(layout, block, step, not self.trans_b, device)
|
||||
self.db_lut, self.db_width = sdd_lut(layout, block, device)
|
||||
|
||||
def __call__(self, a, b, out = None):
|
||||
def __call__(self, a, b, out=None):
|
||||
c = _matmul.apply(
|
||||
a, b, self.trans_a, self.trans_b, self.trans_c, self.mode, self.spdims, self.block,
|
||||
self.c_lut, self.c_width,
|
||||
|
@@ -52,7 +52,7 @@ def processSassLines(fline, sline, labels):
|
||||
asm = asm[:-2] + ";"
|
||||
ctrl = parseCtrl(sline)
|
||||
# BRA target address
|
||||
if BRA_RE.match(asm) != None:
|
||||
if BRA_RE.match(asm) is not None:
|
||||
target = int(BRA_RE.match(asm).group(2), 16)
|
||||
if target in labels:
|
||||
pass
|
||||
@@ -62,7 +62,7 @@ def processSassLines(fline, sline, labels):
|
||||
|
||||
|
||||
def extract(file_path, fun):
|
||||
if fun == None:
|
||||
if fun is None:
|
||||
sass_str = subprocess.check_output(["cuobjdump", "-sass", file_path])
|
||||
else:
|
||||
sass_str = subprocess.check_output(["cuobjdump", "-fun", fun, "-sass", file_path])
|
||||
@@ -77,7 +77,7 @@ def extract(file_path, fun):
|
||||
# /*0x...*/
|
||||
fname_match = FNAME_RE.match(line)
|
||||
# Looking for new function header (function: <name>)
|
||||
while FNAME_RE.match(line) == None:
|
||||
while FNAME_RE.match(line) is None:
|
||||
line_idx += 1
|
||||
if line_idx < len(sass_lines):
|
||||
line = sass_lines[line_idx].decode()
|
||||
@@ -94,7 +94,7 @@ def extract(file_path, fun):
|
||||
# store sass asm in buffer and them print them (for labels)
|
||||
# (ctrl, asm)
|
||||
asm_buffer = []
|
||||
while FLINE_RE.match(line) != None:
|
||||
while FLINE_RE.match(line) is not None:
|
||||
# First line (Offset ASM Encoding)
|
||||
fline = sass_lines[line_idx].decode()
|
||||
line_idx += 1
|
||||
|
@@ -16,10 +16,11 @@ You will learn about:
|
||||
# Custom GPU kernels for elementwise additions are educationally valuable but won't get you very far in practice.
|
||||
# Let us consider instead the case of a simple (numerically stabilized) softmax operation:
|
||||
|
||||
import triton.language as tl
|
||||
import triton
|
||||
import torch
|
||||
|
||||
import triton
|
||||
import triton.language as tl
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
def naive_softmax(x):
|
||||
|
Reference in New Issue
Block a user