[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-08-19 00:50:31 +00:00
parent db7b163cb5
commit a7462d444b
163 changed files with 270 additions and 270 deletions

View File

@@ -326,11 +326,11 @@ for different problem sizes.</p>
size Triton Torch
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
2 16384.0 31.999999 38.400001
3 32768.0 76.800002 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 384.000001 384.000001
6 262144.0 384.000001 341.333321
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 722.823517
@@ -342,7 +342,7 @@ for different problem sizes.</p>
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 47.895 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 41.469 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -371,17 +371,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 186.181817
0 256.0 546.133347 546.133347 188.321838
1 384.0 614.400016 585.142862 153.600004
2 512.0 655.360017 606.814814 154.566038
3 640.0 706.206879 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 812.359066 406.179533 198.834951
94 12288.0 812.429770 415.661740 199.197579
95 12416.0 812.498981 412.149375 198.655991
96 12544.0 810.925276 412.971190 198.913776
97 12672.0 811.007961 411.679167 198.971549
93 12160.0 812.359066 406.179533 199.038365
94 12288.0 812.429770 415.661740 199.298541
95 12416.0 812.498981 412.149375 198.954424
96 12544.0 812.566838 412.546756 199.111113
97 12672.0 811.007961 412.097543 199.264875
[98 rows x 4 columns]
</pre></div>
@@ -394,7 +394,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 31.309 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 28.831 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -567,42 +567,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 3.276800 3.276800
1 384.0 7.372800 ... 7.899428 7.899428
2 512.0 14.563555 ... 16.384000 15.420235
0 256.0 2.978909 ... 3.276800 2.978909
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 15.420235 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 35.389441 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 49.932191 ... 53.773130 52.428801
7 1152.0 44.566925 ... 48.161033 47.396572
7 1152.0 44.566925 ... 48.161033 48.161033
8 1280.0 51.200001 ... 57.690139 57.690139
9 1408.0 64.138541 ... 69.009825 68.147202
10 1536.0 80.430545 ... 81.355034 79.526831
11 1664.0 63.372618 ... 63.372618 62.492442
12 1792.0 72.983276 ... 73.943582 59.467852
13 1920.0 69.467336 ... 71.257735 71.257735
14 2048.0 73.584279 ... 78.398206 77.314362
15 2176.0 83.500614 ... 87.876193 86.367588
11 1664.0 63.372618 ... 63.372618 62.929456
12 1792.0 72.983276 ... 73.460287 59.467852
13 1920.0 68.776119 ... 71.257735 71.257735
14 2048.0 73.908442 ... 78.398206 77.314362
15 2176.0 83.500614 ... 87.494120 86.367588
16 2304.0 68.251065 ... 78.064941 77.307030
17 2432.0 71.305746 ... 86.444504 84.621881
18 2560.0 78.019048 ... 82.331658 81.108913
19 2688.0 83.369354 ... 90.966561 89.464755
20 2816.0 79.587973 ... 84.197315 83.074685
21 2944.0 81.967162 ... 83.060049 82.784108
22 3072.0 82.420822 ... 87.924073 85.019675
23 3200.0 84.768213 ... 96.458178 95.238096
24 3328.0 83.905938 ... 85.096096 84.298943
25 3456.0 82.604067 ... 91.304157 87.442050
26 3584.0 87.211821 ... 98.375705 91.656871
27 3712.0 84.874549 ... 89.035062 86.044224
28 3840.0 84.744825 ... 93.484358 84.484863
29 3968.0 92.582651 ... 84.976733 91.472214
30 4096.0 86.256445 ... 88.475759 90.230403
17 2432.0 71.305746 ... 85.915795 83.864074
18 2560.0 78.019048 ... 82.747477 81.715711
19 2688.0 83.922689 ... 91.185232 89.254248
20 2816.0 80.026067 ... 83.712490 83.074685
21 2944.0 82.102191 ... 82.921853 82.784108
22 3072.0 81.884457 ... 89.310890 88.612060
23 3200.0 83.879425 ... 96.096095 93.704243
24 3328.0 84.101981 ... 85.602017 85.806075
25 3456.0 81.435930 ... 90.687926 90.994998
26 3584.0 87.042978 ... 93.273228 96.683219
27 3712.0 85.822459 ... 88.876645 87.094458
28 3840.0 81.798814 ... 88.050954 88.971840
29 3968.0 92.758598 ... 85.871877 91.301109
30 4096.0 86.536250 ... 87.041329 91.304576
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 6 minutes 18.355 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 6 minutes 32.425 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -198,34 +198,34 @@ to download the full example code</p>
N Triton Torch Apex
0 1024.0 585.142849 277.694907 468.114273
1 1536.0 630.153868 323.368435 511.999982
2 2048.0 668.734716 334.367358 520.126988
3 2560.0 694.237267 362.477870 512.000013
4 3072.0 712.347810 378.092307 496.484863
5 3584.0 725.873439 384.859062 455.111115
6 4096.0 728.177767 381.023256 442.810792
7 4608.0 670.254540 394.267384 426.173427
8 5120.0 688.403381 397.669909 426.666652
9 5632.0 698.542675 395.228063 409.599997
10 6144.0 702.171410 402.885254 411.313806
11 6656.0 700.631610 398.861429 400.360920
12 7168.0 686.754468 394.116833 387.459443
13 7680.0 678.895043 392.587863 386.415087
14 8192.0 633.198054 387.786968 369.216905
15 8704.0 624.502255 387.922008 379.465939
16 9216.0 604.327881 406.214877 383.002605
17 9728.0 585.142883 408.524944 383.369452
18 10240.0 564.965524 409.600010 382.803739
19 10752.0 546.133312 410.577576 381.445676
20 11264.0 531.634232 406.826188 374.686074
21 11776.0 520.486200 409.599991 376.831982
2 2048.0 682.666643 334.367358 520.126988
3 2560.0 694.237267 365.714281 518.481028
4 3072.0 712.347810 378.092307 501.551037
5 3584.0 725.873439 384.859062 451.527536
6 4096.0 728.177767 381.023256 455.111095
7 4608.0 670.254540 394.267384 421.302872
8 5120.0 688.403381 397.669909 424.455959
9 5632.0 698.542675 395.228063 411.470331
10 6144.0 697.191505 402.885254 411.313806
11 6656.0 700.631610 400.360920 400.360920
12 7168.0 690.891575 396.844306 387.459443
13 7680.0 678.895043 393.846167 386.415087
14 8192.0 639.375598 393.609605 372.363633
15 8704.0 624.502255 389.005597 380.502740
16 9216.0 604.327881 407.337026 383.002605
17 9728.0 585.142883 409.599987 383.369452
18 10240.0 564.965524 408.578556 382.803739
19 10752.0 546.133312 411.559798 381.445676
20 11264.0 533.207081 406.826188 373.134567
21 11776.0 520.486200 409.599991 377.587162
22 12288.0 516.031509 413.911572 383.251457
23 12800.0 504.433489 409.599981 376.470582
23 12800.0 504.433489 410.420828 376.470582
24 13312.0 494.180982 405.699062 376.976995
25 13824.0 481.882350 412.656711 379.389355
26 14336.0 471.967074 405.975225 372.969090
27 14848.0 461.297068 406.794504 375.304904
28 15360.0 454.269882 406.887417 377.511515
29 15872.0 447.098578 406.974373 376.225175
25 13824.0 482.934503 411.888257 379.389355
26 14336.0 471.967074 406.695045 374.185964
27 14848.0 461.297068 408.192434 375.304904
28 15360.0 454.269882 406.214870 378.092307
29 15872.0 447.887117 406.974373 376.225175
</pre></div>
</div>
<div class="line-block">
@@ -543,7 +543,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 33.735 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 36.947 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -548,7 +548,7 @@ to download the full example code</p>
<span class="c1"># bench_flash_attention.run(save_path=&#39;.&#39;, print_data=True)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.075 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.077 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-06-fused-attention-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/54a35f6ec55f9746935b9566fb6bb1df/06-fused-attention.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">06-fused-attention.py</span></code></a></p>

View File

@@ -276,7 +276,7 @@ tensor([0.4105, 0.5430, 0.0249, ..., 0.0424, 0.5351, 0.8149], device=&#39;cuda:
The maximum difference between torch and triton is 2.384185791015625e-07
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.011 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.010 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-07-libdevice-function-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/3ff29f967ace7985da24aab10352fc76/07-libdevice-function.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">07-libdevice-function.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>17:11.392</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>17:19.771</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,23 +183,23 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>06:18.355</p></td>
<td><p>06:32.425</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>05:33.735</p></td>
<td><p>05:36.947</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:31.309</p></td>
<td><p>03:28.831</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:47.895</p></td>
<td><p>01:41.469</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="06-fused-attention.html#sphx-glr-getting-started-tutorials-06-fused-attention-py"><span class="std std-ref">Fused Attention</span></a> (<code class="docutils literal notranslate"><span class="pre">06-fused-attention.py</span></code>)</p></td>
<td><p>00:00.075</p></td>
<td><p>00:00.077</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
@@ -207,7 +207,7 @@
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="07-libdevice-function.html#sphx-glr-getting-started-tutorials-07-libdevice-function-py"><span class="std std-ref">Libdevice function</span></a> (<code class="docutils literal notranslate"><span class="pre">07-libdevice-function.py</span></code>)</p></td>
<td><p>00:00.011</p></td>
<td><p>00:00.010</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>