[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-08-19 00:50:31 +00:00
parent db7b163cb5
commit a7462d444b
163 changed files with 270 additions and 270 deletions

View File

@@ -323,23 +323,23 @@ for different problem sizes.</p>
size Triton Torch
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 31.999999 38.400001
3 32768.0 76.800002 76.800002
2 16384.0 38.400001 38.400001
3 32768.0 63.999998 63.999998
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 341.333321
6 262144.0 341.333321 384.000001
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 722.823517
10 4194304.0 780.190482 780.190482
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
13 33554432.0 842.004273 843.811163
13 33554432.0 842.004273 842.004273
14 67108864.0 847.448255 848.362445
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 46.992 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 45.533 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,8 +374,8 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 188.321838
1 384.0 614.400016 585.142862 153.600004
0 256.0 512.000001 546.133347 186.181817
1 384.0 585.142862 585.142862 153.600004
2 512.0 655.360017 606.814814 154.566038
3 640.0 682.666684 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
@@ -383,8 +383,8 @@ We will then compare its performance against (1) <code class="code docutils lite
93 12160.0 814.058574 406.179533 198.530610
94 12288.0 814.111783 415.661740 198.895304
95 12416.0 812.498981 412.149375 198.457532
96 12544.0 812.566838 412.971190 198.716830
97 12672.0 812.633240 412.097543 198.873965
96 12544.0 812.566838 412.546756 198.716830
97 12672.0 812.633240 412.097543 198.776477
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 23.548 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 23.377 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -568,42 +568,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.978909 ... 2.978909 3.276800
0 256.0 2.730667 ... 2.978909 2.978909
1 384.0 7.372800 ... 7.899428 7.899428
2 512.0 14.563555 ... 16.384000 16.384000
2 512.0 14.563555 ... 16.384000 15.420235
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 51.150050 ... 53.773130 52.428801
6 1024.0 51.150050 ... 52.428801 52.428801
7 1152.0 45.242181 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.888887
9 1408.0 64.138541 ... 67.305878 67.305878
10 1536.0 80.430545 ... 79.526831 78.643199
11 1664.0 62.929456 ... 62.061463 62.061463
12 1792.0 72.512412 ... 59.310944 71.588687
13 1920.0 69.120002 ... 70.530615 70.530615
14 2048.0 73.908442 ... 76.959706 76.959706
15 2176.0 83.155572 ... 86.367588 85.269692
16 2304.0 68.251065 ... 76.809875 76.319081
17 2432.0 71.305746 ... 82.388456 84.877538
18 2560.0 77.833728 ... 81.310171 81.108913
19 2688.0 83.552988 ... 89.044730 89.464755
20 2816.0 79.733474 ... 83.712490 82.446516
21 2944.0 81.698415 ... 81.832567 82.102191
22 3072.0 82.062468 ... 88.612060 89.170242
23 3200.0 82.262212 ... 93.704243 94.395283
24 3328.0 84.003845 ... 84.101981 83.905938
25 3456.0 79.508447 ... 84.775569 91.304157
26 3584.0 87.042978 ... 90.365811 97.522120
27 3712.0 85.601834 ... 87.208507 87.552452
28 3840.0 80.960466 ... 88.900318 90.095313
29 3968.0 88.873953 ... 85.271796 87.723894
30 4096.0 93.498941 ... 93.336389 86.258181
10 1536.0 80.430545 ... 79.526831 79.526831
11 1664.0 63.372618 ... 62.492442 62.061463
12 1792.0 72.983276 ... 72.047592 71.588687
13 1920.0 69.120002 ... 70.530615 70.172588
14 2048.0 73.908442 ... 77.314362 76.959706
15 2176.0 83.500614 ... 86.367588 85.632545
16 2304.0 68.251065 ... 76.319081 76.319081
17 2432.0 71.305746 ... 74.918570 84.877538
18 2560.0 78.019048 ... 80.908642 81.108913
19 2688.0 83.186525 ... 89.464755 89.254248
20 2816.0 79.879498 ... 82.602666 82.602666
21 2944.0 82.921853 ... 82.784108 82.921853
22 3072.0 81.825298 ... 88.473602 89.310890
23 3200.0 82.901554 ... 94.674553 94.117647
24 3328.0 83.226931 ... 84.200347 83.905938
25 3456.0 80.380430 ... 91.097818 86.596744
26 3584.0 84.745889 ... 94.250936 94.947616
27 3712.0 81.548851 ... 87.706180 86.754095
28 3840.0 82.654712 ... 90.723546 86.030338
29 3968.0 91.816356 ... 85.211320 91.130650
30 4096.0 86.258181 ... 93.239129 89.240508
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 24.620 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 26.200 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -197,33 +197,33 @@ to download the full example code</p>
0 1024.0 311.088617 99.096776 311.088617
1 1536.0 351.085717 133.083026 338.201833
2 2048.0 423.724127 162.217818 325.509933
3 2560.0 461.954908 182.857144 326.808501
3 2560.0 461.954908 182.857144 325.079368
4 3072.0 515.580429 191.501303 317.793096
5 3584.0 554.941930 208.271186 308.301075
6 4096.0 568.231237 220.412561 294.323343
7 4608.0 498.162157 231.849059 291.799469
8 5120.0 525.128191 242.845844 288.450695
9 5632.0 538.517949 243.326741 290.683877
10 6144.0 544.118087 248.661056 285.767458
11 6656.0 527.207907 256.000009 286.279570
12 7168.0 507.469040 262.243907 288.644296
13 7680.0 482.513091 260.707203 273.066660
14 8192.0 460.440290 269.326017 286.600589
15 8704.0 416.958106 267.815384 284.987724
16 9216.0 428.651187 273.066667 289.507855
5 3584.0 554.941930 208.271186 309.410081
6 4096.0 568.231237 220.412561 298.796351
7 4608.0 498.162157 231.849059 286.507772
8 5120.0 525.128191 242.845844 283.787523
9 5632.0 538.517949 243.107920 291.310338
10 6144.0 544.118087 248.661056 286.322318
11 6656.0 527.207907 256.000009 286.793541
12 7168.0 505.976473 261.844750 288.160801
13 7680.0 481.253256 260.707203 277.172933
14 8192.0 460.440290 268.957600 286.600589
15 8704.0 416.958106 267.472468 285.377055
16 9216.0 428.651187 272.729961 289.507855
17 9728.0 439.683593 280.278512 288.950501
18 10240.0 447.650282 286.433562 290.153487
19 10752.0 430.079980 246.699797 290.267711
20 11264.0 429.786952 245.091565 285.767446
21 11776.0 421.198220 249.447482 288.686414
19 10752.0 430.079980 246.229020 290.267711
20 11264.0 429.104745 245.091565 285.767446
21 11776.0 421.198220 249.007923 288.539048
22 12288.0 420.102570 254.453844 295.207195
23 12800.0 415.696898 253.465340 288.180121
24 13312.0 412.242569 252.759501 290.179836
23 12800.0 415.135142 253.256381 289.811310
24 13312.0 412.242569 252.559690 290.179836
25 13824.0 405.098897 257.190689 292.571423
26 14336.0 398.222222 254.673567 286.481278
27 14848.0 384.414233 257.108233 289.246765
28 15360.0 374.634130 257.610071 286.433562
29 15872.0 367.336555 262.708969 291.229369
26 14336.0 397.761846 254.673567 286.481278
27 14848.0 383.999990 257.108233 289.246765
28 15360.0 374.634130 257.610071 288.000007
29 15872.0 366.982663 262.708969 291.229369
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 12.443 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 12.171 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>12:47.614</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>12:47.292</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,19 +183,19 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:24.620</p></td>
<td><p>05:26.200</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:23.548</p></td>
<td><p>03:23.377</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:12.443</p></td>
<td><p>02:12.171</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:46.992</p></td>
<td><p>01:45.533</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>