[BACKEND] Memory allocation (#33)

This commit is contained in:
Keren Zhou
2022-08-04 11:22:49 -07:00
committed by GitHub
parent b988bae813
commit a7b49b3227
7 changed files with 514 additions and 1 deletions

View File

@@ -0,0 +1,145 @@
// RUN: triton-opt %s --mlir-disable-threading -test-print-allocation 2>&1 | FileCheck %s
#AL = #triton_gpu.blocked<{sizePerThread = [1, 4], threadsPerWarp = [4, 8], warpsPerCTA = [4, 1], order = [1, 0]}>
#BL = #triton_gpu.blocked<{sizePerThread = [1, 4], threadsPerWarp = [1, 32], warpsPerCTA = [4, 1], order = [1, 0]}>
#A = #triton_gpu.shared<{vec = 2, perPhase = 2, maxPhase = 4, order = [1, 0]}>
#B = #triton_gpu.shared<{vec = 2, perPhase = 2, maxPhase = 4, order = [1, 0]}>
#C = #triton_gpu.mma<{version = 2, warpsPerCTA = [4, 1]}>
func @matmul_loop(%lb : index, %ub : index, %step : index, %A : !tt.ptr<f16>, %B : !tt.ptr<f16>) {
%a_ptr_init = tt.broadcast %A : (!tt.ptr<f16>) -> tensor<128x32x!tt.ptr<f16>, #AL>
%b_ptr_init = tt.broadcast %B : (!tt.ptr<f16>) -> tensor<32x128x!tt.ptr<f16>, #BL>
%a_mask = arith.constant dense<true> : tensor<128x32xi1, #AL>
%a_other = arith.constant dense<0.00e+00> : tensor<128x32xf16, #AL>
%b_mask = arith.constant dense<true> : tensor<32x128xi1, #BL>
%b_other = arith.constant dense<0.00e+00> : tensor<32x128xf16, #BL>
%c_init = arith.constant dense<0.00e+00> : tensor<128x128xf32, #C>
%a_off = arith.constant dense<4> : tensor<128x32xi32, #AL>
%b_off = arith.constant dense<4> : tensor<32x128xi32, #BL>
scf.for %iv = %lb to %ub step %step iter_args(%a_ptr = %a_ptr_init, %b_ptr = %b_ptr_init, %prev_c = %c_init) -> (tensor<128x32x!tt.ptr<f16>, #AL>, tensor<32x128x!tt.ptr<f16>, #BL>, tensor<128x128xf32, #C>) {
%a_ = tt.load %a_ptr, %a_mask, %a_other {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x32xf16, #AL>
// CHECK: offset = 0, size = 8192
%a = triton_gpu.convert_layout %a_ : (tensor<128x32xf16, #AL>) -> tensor<128x32xf16, #A>
%b_ = tt.load %b_ptr, %b_mask, %b_other {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<32x128xf16, #BL>
// CHECK: offset = 8192, size = 8192
%b = triton_gpu.convert_layout %b_ : (tensor<32x128xf16, #BL>) -> tensor<32x128xf16, #B>
%c = tt.dot %a, %b, %prev_c {allowTF32 = true} : tensor<128x32xf16, #A> * tensor<32x128xf16, #B> -> tensor<128x128xf32, #C>
%next_a_ptr = tt.getelementptr %a_ptr, %a_off : tensor<128x32x!tt.ptr<f16>, #AL>
%next_b_ptr = tt.getelementptr %b_ptr, %b_off : tensor<32x128x!tt.ptr<f16>, #BL>
scf.yield %next_a_ptr, %next_b_ptr, %c : tensor<128x32x!tt.ptr<f16>, #AL>, tensor<32x128x!tt.ptr<f16>, #BL>, tensor<128x128xf32, #C>
}
return
// CHECK: size = 16384
}
// Shared memory is available after a tensor's liveness range ends
func @synthesized_reusable(%A : !tt.ptr<f16>) {
%cst1 = arith.constant dense<true> : tensor<128x32xi1, #AL>
%cst2 = arith.constant dense<0.000000e+00> : tensor<128x32xf16, #AL>
%cst3 = arith.constant dense<true> : tensor<32x128xi1, #AL>
%cst4 = arith.constant dense<0.000000e+00> : tensor<32x128xf16, #AL>
%c_init = arith.constant dense<0.00e+00> : tensor<128x128xf32, #C>
%a_ptr = tt.broadcast %A : (!tt.ptr<f16>) -> tensor<128x32x!tt.ptr<f16>, #AL>
%b_ptr = tt.broadcast %A : (!tt.ptr<f16>) -> tensor<32x128x!tt.ptr<f16>, #AL>
%a1_ = tt.load %a_ptr, %cst1, %cst2 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x32xf16, #AL>
// CHECK: offset = 0, size = 8192
%a1 = triton_gpu.convert_layout %a1_ : (tensor<128x32xf16, #AL>) -> tensor<128x32xf16, #A>
%a2_ = tt.load %b_ptr, %cst3, %cst4 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<32x128xf16, #AL>
// CHECK: offset = 8192, size = 8192
%a2 = triton_gpu.convert_layout %a2_ : (tensor<32x128xf16, #AL>) -> tensor<32x128xf16, #A>
%a3_ = tt.load %a_ptr, %cst1, %cst2 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<128x32xf16, #AL>
// CHECK: offset = 16384, size = 8192
%a3 = triton_gpu.convert_layout %a3_ : (tensor<128x32xf16, #AL>) -> tensor<128x32xf16, #A>
%c = tt.dot %a1, %a2, %c_init {allowTF32 = true} : tensor<128x32xf16, #A> * tensor<32x128xf16, #B> -> tensor<128x128xf32, #C>
%a4_ = tt.load %b_ptr, %cst3, %cst4 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<32x128xf16, #AL>
// CHECK: offset = 0, size = 8192
%a4 = triton_gpu.convert_layout %a4_ : (tensor<32x128xf16, #AL>) -> tensor<32x128xf16, #A>
%c1 = tt.dot %a3, %a4, %c {allowTF32 = true} : tensor<128x32xf16, #A> * tensor<32x128xf16, #B> -> tensor<128x128xf32, #C>
return
// CHECK: size = 24576
}
// A tensor's shared memory offset is larger than it needs to accommodate further tensors
// %cst0->%c
// %cst1->%cst4
// %cst3->%g->%h->%i
func @synthesize_preallocate(%A : !tt.ptr<f16>) {
// CHECK: offset = 0, size = 512
%cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
// CHECK: offset = 1024, size = 512
%cst1 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
// CHECK: offset = 1536, size = 512
%cst2 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
// CHECK: offset = 2048, size = 1024
%a = tt.cat %cst0, %cst1 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
// CHECK: offset = 3072, size = 1024
%b = tt.cat %cst0, %cst2 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
// CHECK: offset = 0, size = 1024
%c = tt.cat %cst1, %cst2 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
// CHECK: offset = 1024, size = 1024
%cst4 = arith.constant dense<0.000000e+00> : tensor<32x16xf16, #A>
// CHECK: offset = 6144, size = 2048
%e = tt.cat %a, %cst4 {axis = 0} : (tensor<32x16xf16, #A>, tensor<32x16xf16, #A>) -> tensor<64x16xf16, #A>
// CHECK: offset = 8192, size = 2048
%d = tt.cat %b, %cst4 {axis = 0} : (tensor<32x16xf16, #A>, tensor<32x16xf16, #A>) -> tensor<64x16xf16, #A>
// CHECK: offset = 10240, size = 2048
%f = tt.cat %c, %cst4 {axis = 0} : (tensor<32x16xf16, #A>, tensor<32x16xf16, #A>) -> tensor<64x16xf16, #A>
// CHECK: offset = 0, size = 2048
%cst5 = arith.constant dense<0.000000e+00> : tensor<64x16xf16, #A>
// CHECK: offset = 2048, size = 4096
%g = tt.cat %e, %cst5 {axis = 0} : (tensor<64x16xf16, #A>, tensor<64x16xf16, #A>) -> tensor<128x16xf16, #A>
// CHECK: offset = 2048, size = 4096
%h = tt.cat %d, %cst5 {axis = 0} : (tensor<64x16xf16, #A>, tensor<64x16xf16, #A>) -> tensor<128x16xf16, #A>
// CHECK: offset = 2048, size = 4096
%i = tt.cat %f, %cst5 {axis = 0} : (tensor<64x16xf16, #A>, tensor<64x16xf16, #A>) -> tensor<128x16xf16, #A>
return
// CHECK: size = 12288
}
// Unused tensors are immediately released
func @synthesize_unused(%A : !tt.ptr<f16>) {
// CHECK: offset = 0, size = 1024
%cst0 = arith.constant dense<0.000000e+00> : tensor<32x16xf16, #A>
// CHECK: offset = 0, size = 512
%cst1 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
// CHECK: offset = 512, size = 512
%cst2 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
// CHECK: offset = 1024, size = 1024
%a = tt.cat %cst1, %cst2 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
return
// CHECK: size = 2048
}
// cst0 is alive through the entire function, it cannot be released before the end of the function
func @synthesize_longlive(%A : !tt.ptr<f16>) {
// CHECK: offset = 0, size = 512
%cst0 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
// CHECK: offset = 512, size = 512
%cst1 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
// CHECK: offset = 1024, size = 512
%cst2 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
// CHECK: offset = 1536, size = 1024
%a = tt.cat %cst1, %cst2 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
// CHECK: offset = 512, size = 512
%cst3 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
// CHECK: offset = 1024, size = 512
%cst4 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
// CHECK: offset = 1536, size = 1024
%b = tt.cat %cst3, %cst4 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
// CHECK: offset = 1536, size = 512
%cst5 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
// CHECK: offset = 1536, size = 512
%cst6 = arith.constant dense<0.000000e+00> : tensor<16x16xf16, #A>
// CHECK: offset = 1536, size = 1024
%c = tt.cat %cst3, %cst4 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
// CHECK: offset = 512, size = 1024
%d = tt.cat %cst0, %cst0 {axis = 0} : (tensor<16x16xf16, #A>, tensor<16x16xf16, #A>) -> tensor<32x16xf16, #A>
return
// CHECK: size = 2560
}