[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-09-12 00:51:39 +00:00
parent f79b7c6f03
commit a81d78b680
165 changed files with 272 additions and 272 deletions

View File

@@ -324,10 +324,10 @@ for different problem sizes.</p>
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 63.999998 63.999998
3 32768.0 63.999998 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 384.000001 384.000001
6 262144.0 341.333321 384.000001
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 722.823517
@@ -339,7 +339,7 @@ for different problem sizes.</p>
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 42.405 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 42.907 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,17 +374,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 190.511628
1 384.0 585.142862 585.142862 153.600004
0 256.0 512.000001 546.133347 188.321838
1 384.0 585.142862 585.142862 151.703707
2 512.0 655.360017 606.814814 154.566038
3 640.0 682.666684 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
4 768.0 722.823517 664.216187 163.839992
.. ... ... ... ...
93 12160.0 814.058574 406.179533 198.530610
94 12288.0 814.111783 415.661740 198.895304
95 12416.0 812.498981 411.296057 198.457532
96 12544.0 812.566838 412.971190 198.618504
97 12672.0 812.633240 412.516771 198.679085
93 12160.0 812.359066 405.755985 198.936606
94 12288.0 814.111783 415.661740 199.096718
95 12416.0 812.498981 412.577363 198.854847
96 12544.0 812.566838 412.971190 199.012395
97 12672.0 812.633240 412.097543 199.167004
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 21.462 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 23.982 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -568,42 +568,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.978909 ... 3.276800 2.978909
0 256.0 2.730667 ... 2.978909 2.978909
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 51.150050 ... 52.428801 52.428801
6 1024.0 51.150050 ... 53.092457 52.428801
7 1152.0 45.242181 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.109587
9 1408.0 64.138541 ... 67.305878 66.485074
10 1536.0 80.430545 ... 79.526831 78.643199
11 1664.0 62.929456 ... 62.061463 62.061463
12 1792.0 72.512412 ... 71.588687 71.588687
12 1792.0 72.512412 ... 62.441243 62.441243
13 1920.0 69.120002 ... 70.172588 70.172588
14 2048.0 73.908442 ... 76.959706 76.959706
15 2176.0 83.155572 ... 86.367588 85.269692
16 2304.0 68.446623 ... 76.809875 76.563695
17 2432.0 71.305746 ... 74.918570 84.877538
18 2560.0 77.833728 ... 81.310171 81.108913
19 2688.0 83.552988 ... 89.888756 89.464755
20 2816.0 79.733474 ... 83.552120 83.074685
21 2944.0 82.237674 ... 81.564701 79.610276
22 3072.0 82.661468 ... 88.612060 89.310890
23 3200.0 83.989503 ... 95.665176 95.238096
24 3328.0 83.130825 ... 84.200347 83.808259
25 3456.0 82.688790 ... 87.727494 88.400840
26 3584.0 86.958797 ... 97.311031 88.764234
27 3712.0 84.159518 ... 82.287760 85.822459
28 3840.0 84.679936 ... 86.670843 91.511791
29 3968.0 85.810547 ... 91.198760 86.788006
30 4096.0 93.336389 ... 92.372834 88.243079
14 2048.0 73.908442 ... 77.314362 76.959706
15 2176.0 83.500614 ... 86.367588 85.632545
16 2304.0 68.446623 ... 76.563695 76.563695
17 2432.0 71.305746 ... 74.719317 83.614477
18 2560.0 78.019048 ... 80.709358 80.313727
19 2688.0 83.922689 ... 88.628636 88.628636
20 2816.0 79.298560 ... 83.552120 83.233226
21 2944.0 80.510553 ... 81.967162 82.102191
22 3072.0 81.825298 ... 88.335577 88.197981
23 3200.0 84.321474 ... 87.549434 95.238096
24 3328.0 82.748617 ... 80.437202 83.808259
25 3456.0 81.766291 ... 91.304157 90.687926
26 3584.0 83.177979 ... 94.647779 97.628001
27 3712.0 85.455380 ... 86.192706 88.640059
28 3840.0 80.110103 ... 90.649182 85.996889
29 3968.0 91.747320 ... 78.421554 83.578035
30 4096.0 91.491294 ... 82.190894 84.334104
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 23.071 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 26.600 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -194,36 +194,36 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 311.088617 98.698793 299.707322
1 1536.0 351.085717 135.032961 335.127270
2 2048.0 427.408686 160.627450 321.254900
3 2560.0 461.954908 181.775141 328.556154
4 3072.0 519.211251 192.501302 319.168834
5 3584.0 554.941930 208.271186 312.785456
6 4096.0 568.231237 220.412561 300.623865
7 4608.0 500.416301 232.825259 287.251954
8 5120.0 527.381977 241.414550 281.834861
9 5632.0 547.238891 242.671458 288.820505
10 6144.0 550.208948 251.631408 287.438593
11 6656.0 534.260858 256.410903 286.279570
12 7168.0 510.480705 257.919035 282.482768
13 7680.0 482.513091 265.208635 279.272719
14 8192.0 463.698115 267.130429 276.523207
15 8704.0 417.791980 263.424974 279.646592
16 9216.0 428.651187 273.066667 288.751954
17 9728.0 439.683593 280.615388 288.950501
18 10240.0 446.836366 286.767793 289.469963
19 10752.0 432.241202 246.229020 288.644296
20 11264.0 429.786952 242.671458 283.966395
21 11776.0 423.089806 248.351483 287.219500
22 12288.0 418.314886 253.796902 294.323369
23 12800.0 416.260178 253.047766 289.265522
24 13312.0 413.844560 253.965017 291.769875
25 13824.0 403.130022 256.792581 291.543045
26 14336.0 397.302533 255.619613 288.402346
27 14848.0 381.533186 255.816222 287.844912
28 15360.0 371.987899 261.818180 288.450715
29 15872.0 366.276922 261.626369 289.679087
0 1024.0 311.088617 99.902435 319.168844
1 1536.0 354.461542 133.565214 344.523365
2 2048.0 423.724127 160.627450 334.367350
3 2560.0 461.954908 181.775141 330.322572
4 3072.0 515.580429 191.005181 316.429186
5 3584.0 551.384634 208.776702 308.301075
6 4096.0 568.231237 219.919464 300.623865
7 4608.0 500.416301 232.825259 288.751954
8 5120.0 529.655159 241.414550 287.102804
9 5632.0 540.671974 244.426754 291.939522
10 6144.0 548.163546 250.775512 287.438593
11 6656.0 530.710976 256.000009 285.767438
12 7168.0 516.612607 255.240352 279.726817
13 7680.0 485.052616 265.590783 284.006166
14 8192.0 464.794337 259.035567 279.272725
15 8704.0 416.127506 267.472468 285.767450
16 9216.0 431.157889 273.742580 289.887291
17 9728.0 438.857162 279.942444 289.308559
18 10240.0 446.836366 287.102804 290.496460
19 10752.0 429.364408 246.699797 289.941565
20 11264.0 429.786952 245.091565 286.372873
21 11776.0 421.826879 249.447482 288.391833
22 12288.0 421.905564 254.234486 294.911986
23 12800.0 413.458944 253.884294 290.084977
24 13312.0 411.711355 253.360814 290.179836
25 13824.0 404.604870 256.991469 292.056329
26 14336.0 397.761846 254.673567 288.402346
27 14848.0 382.351933 257.293872 289.481735
28 15360.0 376.932517 257.970599 288.000007
29 15872.0 368.402336 262.527914 291.006885
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 11.205 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 12.559 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>12:38.153</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>12:46.059</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,19 +183,19 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:23.071</p></td>
<td><p>05:26.600</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:21.462</p></td>
<td><p>03:23.982</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:11.205</p></td>
<td><p>02:12.559</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:42.405</p></td>
<td><p>01:42.907</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>