[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-04-21 00:45:25 +00:00
parent 8d0e47d73e
commit ab04e47bf2
158 changed files with 312 additions and 312 deletions

View File

@@ -324,10 +324,10 @@ for different problem sizes.</p>
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 63.999998 63.999998
3 32768.0 76.800002 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 341.333321
6 262144.0 341.333321 384.000001
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 702.171410
@@ -339,7 +339,7 @@ for different problem sizes.</p>
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 40.524 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 43.506 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,17 +374,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 512.000001 188.321838
0 256.0 512.000001 546.133347 190.511628
1 384.0 585.142862 585.142862 151.703707
2 512.0 655.360017 606.814814 154.566038
2 512.0 655.360017 606.814814 156.038096
3 640.0 682.666684 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
4 768.0 722.823517 646.736871 163.839992
.. ... ... ... ...
93 12160.0 812.359066 406.179533 199.038365
94 12288.0 814.111783 415.661740 199.197579
95 12416.0 812.498981 411.722274 198.904612
96 12544.0 812.566838 412.546756 199.012395
97 12672.0 812.633240 412.097543 199.167004
93 12160.0 812.359066 405.755985 198.631953
94 12288.0 814.111783 415.661740 198.895304
95 12416.0 812.498981 412.149375 198.655991
96 12544.0 812.566838 412.971190 198.716830
97 12672.0 812.633240 412.097543 198.873965
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 22.390 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 23.965 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -568,42 +568,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 3.276800 2.978909
1 384.0 7.372800 ... 8.507077 7.899428
0 256.0 2.730667 ... 2.978909 2.978909
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 31.597714 ... 34.028308 34.028308
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 37.971025 ... 39.025776 39.025776
6 1024.0 49.932191 ... 52.428801 52.428801
7 1152.0 45.242181 ... 46.656000 46.656000
7 1152.0 44.566925 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.888887
9 1408.0 64.138541 ... 67.305878 67.305878
10 1536.0 80.430545 ... 79.526831 79.526831
11 1664.0 63.372618 ... 62.492442 62.061463
12 1792.0 72.983276 ... 71.588687 71.588687
13 1920.0 69.120002 ... 70.172588 70.172588
9 1408.0 64.138541 ... 67.305878 65.684049
10 1536.0 80.430545 ... 79.526831 78.643199
11 1664.0 62.929456 ... 62.492442 62.061463
12 1792.0 72.983276 ... 72.047592 71.588687
13 1920.0 68.776119 ... 70.172588 70.172588
14 2048.0 73.908442 ... 76.959706 76.608294
15 2176.0 83.155572 ... 85.998493 85.269692
16 2304.0 68.251065 ... 76.319081 76.563695
17 2432.0 71.305746 ... 74.918570 83.864074
18 2560.0 77.833728 ... 81.310171 80.908642
19 2688.0 83.186525 ... 90.102270 89.254248
20 2816.0 82.135981 ... 83.074685 83.392363
21 2944.0 80.902653 ... 82.646820 82.509987
22 3072.0 81.589488 ... 87.787755 86.447489
23 3200.0 80.604535 ... 95.952022 94.814812
24 3328.0 82.939284 ... 82.181847 81.901361
25 3456.0 81.518272 ... 86.596744 90.180725
26 3584.0 87.211821 ... 98.375705 96.579370
27 3712.0 82.491612 ... 88.679403 81.153437
28 3840.0 84.744825 ... 92.313853 84.355978
29 3968.0 92.723355 ... 85.271796 88.744681
30 4096.0 89.090569 ... 92.884244 86.202781
15 2176.0 83.155572 ... 85.998493 85.632545
16 2304.0 68.251065 ... 76.563695 76.319081
17 2432.0 71.125224 ... 82.147552 83.366361
18 2560.0 77.833728 ... 81.310171 80.313727
19 2688.0 83.737433 ... 89.254248 89.676257
20 2816.0 82.916747 ... 83.552120 82.446516
21 2944.0 82.102191 ... 82.237674 82.102191
22 3072.0 82.661468 ... 88.060814 88.335577
23 3200.0 84.544253 ... 95.380032 94.814812
24 3328.0 82.939284 ... 84.298943 84.496824
25 3456.0 80.061141 ... 81.353753 81.192449
26 3584.0 87.296493 ... 97.205829 96.943817
27 3712.0 80.692524 ... 86.867254 82.118659
28 3840.0 80.197243 ... 89.043476 91.322872
29 3968.0 85.993854 ... 91.609561 83.922926
30 4096.0 93.760204 ... 90.443212 87.267706
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 17.895 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 6 minutes 1.444 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -371,7 +371,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.010 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.114 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -195,35 +195,35 @@ to download the full example code</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 307.200008 99.497980 315.076934
1 1536.0 347.773587 133.083026 338.201833
2 2048.0 423.724127 161.684218 325.509933
3 2560.0 458.507457 182.314537 325.079368
4 3072.0 515.580429 190.511624 316.429186
5 3584.0 551.384634 208.271186 310.527060
6 4096.0 568.231237 220.907859 299.707322
7 4608.0 498.162157 231.364016 286.507772
8 5120.0 527.381977 242.366855 284.444444
9 5632.0 540.671974 242.671458 288.820505
10 6144.0 540.131844 249.925419 285.767458
11 6656.0 528.953642 256.000009 285.257135
12 7168.0 508.970395 255.240352 277.470965
13 7680.0 485.052616 266.358392 283.569230
14 8192.0 461.521112 260.753323 276.134828
15 8704.0 416.958106 265.433292 282.291896
16 9216.0 427.822068 269.736580 286.693456
17 9728.0 438.857162 282.996365 291.112221
18 10240.0 445.217381 286.433562 290.496460
19 10752.0 423.724151 245.760009 290.267711
20 11264.0 428.424741 243.765566 284.864065
21 11776.0 424.360356 249.667843 288.981596
22 12288.0 420.701865 253.578674 294.617366
23 12800.0 416.260178 254.304635 290.909089
24 13312.0 412.775186 253.360814 291.237929
25 13824.0 405.098897 257.990666 292.571423
26 14336.0 400.540153 252.802351 287.438588
27 14848.0 383.586664 260.110958 292.811844
28 15360.0 378.869469 261.076480 290.267715
29 15872.0 369.116300 261.267482 289.239176
1 1536.0 351.085717 134.050910 344.523365
2 2048.0 427.408686 159.067963 332.108094
3 2560.0 458.507457 182.857144 330.322572
4 3072.0 519.211251 191.501303 316.429186
5 3584.0 551.384634 207.768111 310.527060
6 4096.0 568.231237 220.907859 298.796351
7 4608.0 498.162157 232.336141 289.507855
8 5120.0 529.655159 243.326731 289.811322
9 5632.0 540.671974 244.426754 291.310338
10 6144.0 550.208948 251.202731 287.438593
11 6656.0 534.260858 256.000009 286.279570
12 7168.0 516.612607 253.734520 277.919225
13 7680.0 488.912481 266.743841 280.547947
14 8192.0 463.698115 258.354805 278.481578
15 8704.0 416.958106 267.472468 285.377055
16 9216.0 430.319054 272.394084 290.267724
17 9728.0 437.213490 280.278512 288.950501
18 10240.0 446.836366 287.102804 290.153487
19 10752.0 430.079980 246.464170 289.941565
20 11264.0 430.471331 245.536784 286.069848
21 11776.0 421.198220 249.007923 288.686414
22 12288.0 418.314886 254.453844 294.323369
23 12800.0 414.574901 253.465340 289.538159
24 13312.0 412.775186 252.559690 289.129403
25 13824.0 404.604870 256.792581 291.799461
26 14336.0 395.930964 256.190622 289.129416
27 14848.0 386.918555 257.479779 289.012175
28 15360.0 376.547496 258.332158 287.326580
29 15872.0 369.116300 261.626369 290.784741
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 12.224 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 13.521 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>12:33.042</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>13:22.551</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,23 +183,23 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:17.895</p></td>
<td><p>06:01.444</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:22.390</p></td>
<td><p>03:23.965</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:12.224</p></td>
<td><p>02:13.521</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:40.524</p></td>
<td><p>01:43.506</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.010</p></td>
<td><p>00:00.114</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>