[FRONTEND] provide device kwargs && fix fstring error for py<3.8 (#515)

Co-authored-by: Philippe Tillet <phil@openai.com>
This commit is contained in:
Jiabao Lei
2022-05-15 07:21:46 +08:00
committed by GitHub
parent d35617bea1
commit abea3dc2c6
2 changed files with 3 additions and 3 deletions

View File

@@ -40,7 +40,7 @@ def bench_matmul(M, N, K, block, layout_mode, op_mode, AT, BT, dtype, provider,
# create op
tflops = lambda ms: num_flops / ms * 1e3
if provider == 'triton':
op = triton.ops.blocksparse.matmul(layout, block, op_mode, trans_a=AT, trans_b=BT)
op = triton.ops.blocksparse.matmul(layout, block, op_mode, device="cuda", trans_a=AT, trans_b=BT)
# inputs
a = triton.testing.sparsify_tensor(a, layout, block) if op_mode == 'dsd' else a
b = triton.testing.sparsify_tensor(b, layout, block) if op_mode == 'dds' else b
@@ -83,7 +83,7 @@ def bench_softmax(M, N, block, layout_mode, dtype, provider, warmup=10, rep=50):
a = torch.randn((Z, H, M, N), dtype=dtype, device='cuda')
if provider == 'triton':
a = triton.testing.sparsify_tensor(a, layout, block)
op = triton.ops.blocksparse.softmax(layout, block)
op = triton.ops.blocksparse.softmax(layout, block, device="cuda")
gbps = lambda ms: (2 * a.numel() * a.element_size() * 1e-9) / (ms * 1e-3)
mean_ms, min_ms, max_ms = triton.testing.do_bench(lambda: op(a), warmup=warmup, rep=rep)
return gbps(mean_ms), gbps(min_ms), gbps(max_ms)

View File

@@ -644,7 +644,7 @@ def test_f16_to_f8_rounding():
)
assert torch.all(
torch.logical_not(mismatch)
), f"{f16_input[mismatch]=} {f16_output[mismatch]=} {abs_error[mismatch]=} {min_error[mismatch]=}"
), f"f16_input[mismatch]={f16_input[mismatch]} f16_output[mismatch]={f16_output[mismatch]} abs_error[mismatch]={abs_error[mismatch]} min_error[mismatch]={min_error[mismatch]}"
# ---------------