[BACKEND] Added support for scalars in LoadOp / StoreOp / ElementwiseOp (#814)

Also fixed various errors that showed up in `test_core.py`, and added more TODOs for open (hopefully relatively minor) issues
This commit is contained in:
Philippe Tillet
2022-10-28 01:17:55 -07:00
committed by GitHub
parent 3685194456
commit ac0f6793cc
6 changed files with 269 additions and 419 deletions

View File

@@ -556,45 +556,45 @@ def make_ptr_str(name, shape):
# # ---------------
# @triton.jit
# def fn(a, b):
# return a + b, \
# a - b, \
# a * b
@triton.jit
def fn(a, b):
return a + b, \
a - b, \
a * b
# def test_tuples():
# device = 'cuda'
def test_tuples():
device = 'cuda'
# @triton.jit
# def with_fn(X, Y, A, B, C):
# x = tl.load(X)
# y = tl.load(Y)
# a, b, c = fn(x, y)
# tl.store(A, a)
# tl.store(B, b)
# tl.store(C, c)
@triton.jit
def with_fn(X, Y, A, B, C):
x = tl.load(X)
y = tl.load(Y)
a, b, c = fn(x, y)
tl.store(A, a)
tl.store(B, b)
tl.store(C, c)
# @triton.jit
# def without_fn(X, Y, A, B, C):
# x = tl.load(X)
# y = tl.load(Y)
# a, b, c = x + y, x - y, x * y
# tl.store(A, a)
# tl.store(B, b)
# tl.store(C, c)
@triton.jit
def without_fn(X, Y, A, B, C):
x = tl.load(X)
y = tl.load(Y)
a, b, c = x + y, x - y, x * y
tl.store(A, a)
tl.store(B, b)
tl.store(C, c)
# x = torch.tensor([1.3], device=device, dtype=torch.float32)
# y = torch.tensor([1.9], device=device, dtype=torch.float32)
# a_tri = torch.tensor([0], device=device, dtype=torch.float32)
# b_tri = torch.tensor([0], device=device, dtype=torch.float32)
# c_tri = torch.tensor([0], device=device, dtype=torch.float32)
# for kernel in [with_fn, without_fn]:
# kernel[(1, )](x, y, a_tri, b_tri, c_tri, num_warps=1)
# a_ref, b_ref, c_ref = x + y, x - y, x * y
# assert a_tri == a_ref
# assert b_tri == b_ref
# assert c_tri == c_ref
x = torch.tensor([1.3], device=device, dtype=torch.float32)
y = torch.tensor([1.9], device=device, dtype=torch.float32)
a_tri = torch.tensor([0], device=device, dtype=torch.float32)
b_tri = torch.tensor([0], device=device, dtype=torch.float32)
c_tri = torch.tensor([0], device=device, dtype=torch.float32)
for kernel in [with_fn, without_fn]:
kernel[(1, )](x, y, a_tri, b_tri, c_tri, num_warps=1)
a_ref, b_ref, c_ref = x + y, x - y, x * y
assert a_tri == a_ref
assert b_tri == b_ref
assert c_tri == c_ref
# # ---------------
@@ -709,75 +709,77 @@ def make_ptr_str(name, shape):
# # ---------------
# @pytest.mark.parametrize("dtype_x, dtype_z, bitcast", [
# (dtype_x, dtype_z, False)
# for dtype_x in dtypes
# for dtype_z in dtypes
# ] + [
# ('float32', 'bfloat16', False),
# ('bfloat16', 'float32', False),
# ('float32', 'int32', True),
# ('float32', 'int1', False),
# ] + [
# (f'uint{x}', f'int{x}', True) for x in [8, 16, 32, 64]
# ] + [
# (f'int{x}', f'uint{x}', True) for x in [8, 16, 32, 64]
# ])
# def test_cast(dtype_x, dtype_z, bitcast, device='cuda'):
# # This is tricky because numpy doesn't have bfloat, and torch doesn't have uints.
# x0 = 43 if dtype_x in int_dtypes else 43.5
# if dtype_x in float_dtypes and dtype_z == 'int1':
# x0 = 0.5
# if dtype_x.startswith('bfloat'):
# x_tri = torch.tensor([x0], dtype=getattr(torch, dtype_x), device=device)
# else:
# x = np.array([x0], dtype=getattr(np, dtype_x))
# x_tri = to_triton(x)
@pytest.mark.parametrize("dtype_x, dtype_z, bitcast", [
(dtype_x, dtype_z, False)
for dtype_x in dtypes
for dtype_z in dtypes
] + [
# TODO:
# ('float32', 'bfloat16', False),
# ('bfloat16', 'float32', False),
('float32', 'int32', True),
# TODO:
# ('float32', 'int1', False),
] + [
(f'uint{x}', f'int{x}', True) for x in [8, 16, 32, 64]
] + [
(f'int{x}', f'uint{x}', True) for x in [8, 16, 32, 64]
])
def test_cast(dtype_x, dtype_z, bitcast, device='cuda'):
# This is tricky because numpy doesn't have bfloat, and torch doesn't have uints.
x0 = 43 if dtype_x in int_dtypes else 43.5
if dtype_x in float_dtypes and dtype_z == 'int1':
x0 = 0.5
if dtype_x.startswith('bfloat'):
x_tri = torch.tensor([x0], dtype=getattr(torch, dtype_x), device=device)
else:
x = np.array([x0], dtype=getattr(np, dtype_x))
x_tri = to_triton(x)
# # triton kernel
# @triton.jit
# def kernel(X, Z, BITCAST: tl.constexpr):
# x = tl.load(X)
# z = x.to(Z.dtype.element_ty, bitcast=BITCAST)
# tl.store(Z, z)
# triton kernel
@triton.jit
def kernel(X, Z, BITCAST: tl.constexpr):
x = tl.load(X)
z = x.to(Z.dtype.element_ty, bitcast=BITCAST)
tl.store(Z, z)
# dtype_z_np = dtype_z if dtype_z != 'int1' else 'bool_'
# # triton result
# if dtype_z.startswith('bfloat'):
# z_tri = torch.empty((1,), dtype=getattr(torch, dtype_z), device=device)
# else:
# z_tri = to_triton(np.empty((1, ), dtype=getattr(np, dtype_z_np)), device=device)
# kernel[(1, )](x_tri, z_tri, BITCAST=bitcast)
# # torch result
# if dtype_z.startswith('bfloat') or dtype_x.startswith('bfloat'):
# assert bitcast is False
# z_ref = x_tri.to(z_tri.dtype)
# assert z_tri == z_ref
# else:
# if bitcast:
# z_ref = x.view(getattr(np, dtype_z_np))
# else:
# z_ref = x.astype(getattr(np, dtype_z_np))
# assert to_numpy(z_tri) == z_ref
dtype_z_np = dtype_z if dtype_z != 'int1' else 'bool_'
# triton result
if dtype_z.startswith('bfloat'):
z_tri = torch.empty((1,), dtype=getattr(torch, dtype_z), device=device)
else:
z_tri = to_triton(np.empty((1, ), dtype=getattr(np, dtype_z_np)), device=device)
kernel[(1, )](x_tri, z_tri, BITCAST=bitcast)
# torch result
if dtype_z.startswith('bfloat') or dtype_x.startswith('bfloat'):
assert bitcast is False
z_ref = x_tri.to(z_tri.dtype)
assert z_tri == z_ref
else:
if bitcast:
z_ref = x.view(getattr(np, dtype_z_np))
else:
z_ref = x.astype(getattr(np, dtype_z_np))
assert to_numpy(z_tri) == z_ref
# def test_store_bool():
# """Tests that boolean True is stored as 1"""
# @triton.jit
# def copy_kernel(input_ptr, output_ptr, n_elements, BLOCK_SIZE: tl.constexpr):
# offsets = tl.program_id(axis=0) * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
# mask = offsets < n_elements
# input = tl.load(input_ptr + offsets, mask=mask)
# output = input
# tl.store(output_ptr + offsets, output, mask=mask)
def test_store_bool():
"""Tests that boolean True is stored as 1"""
@triton.jit
def copy_kernel(input_ptr, output_ptr, n_elements, BLOCK_SIZE: tl.constexpr):
offsets = tl.program_id(axis=0) * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
mask = offsets < n_elements
input = tl.load(input_ptr + offsets, mask=mask)
output = input
tl.store(output_ptr + offsets, output, mask=mask)
# src = torch.tensor([True, False], dtype=torch.bool, device='cuda')
# n_elements = src.numel()
# dst = torch.empty_like(src)
# grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),)
# copy_kernel[grid](src, dst, n_elements, BLOCK_SIZE=1024)
src = torch.tensor([True, False], dtype=torch.bool, device='cuda')
n_elements = src.numel()
dst = torch.empty_like(src)
grid = lambda meta: (triton.cdiv(n_elements, meta['BLOCK_SIZE']),)
copy_kernel[grid](src, dst, n_elements, BLOCK_SIZE=1024)
# assert (to_numpy(src).view('uint8') == to_numpy(dst).view('uint8')).all()
assert (to_numpy(src).view('uint8') == to_numpy(dst).view('uint8')).all()
# @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
@@ -990,48 +992,49 @@ def make_ptr_str(name, shape):
# # ---------------
# @pytest.mark.parametrize("dtype_str, shape, perm",
# [(dtype, shape, perm)
# for dtype in ['bfloat16', 'float16', 'float32']
# for shape in [(64, 64), (128, 128)]
# for perm in [(1, 0)]])
# def test_permute(dtype_str, shape, perm, device='cuda'):
# check_type_supported(dtype_str) # bfloat16 on cc < 80 will not be tested
@pytest.mark.parametrize("dtype_str, shape, perm",
[(dtype, shape, perm)
# TODO: bfloat16
for dtype in ['float16', 'float32']
for shape in [(64, 64), (128, 128)]
for perm in [(1, 0)]])
def test_permute(dtype_str, shape, perm, device='cuda'):
check_type_supported(dtype_str) # bfloat16 on cc < 80 will not be tested
# # triton kernel
# @triton.jit
# def kernel(X, stride_xm, stride_xn,
# Z, stride_zm, stride_zn,
# BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
# off_m = tl.arange(0, BLOCK_M)
# off_n = tl.arange(0, BLOCK_N)
# Xs = X + off_m[:, None] * stride_xm + off_n[None, :] * stride_xn
# Zs = Z + off_m[:, None] * stride_zm + off_n[None, :] * stride_zn
# tl.store(Zs, tl.load(Xs))
# # input
# x = numpy_random(shape, dtype_str=dtype_str)
# # triton result
# z_tri = to_triton(np.empty_like(x), device=device, dst_type=dtype_str)
# z_tri_contiguous = to_triton(np.empty_like(x), device=device, dst_type=dtype_str)
# x_tri = to_triton(x, device=device, dst_type=dtype_str)
# pgm = kernel[(1, 1)](x_tri, x_tri.stride(0), x_tri.stride(1),
# z_tri, z_tri.stride(1), z_tri.stride(0),
# BLOCK_M=shape[0], BLOCK_N=shape[1])
# pgm_contiguous = kernel[(1, 1)](x_tri, x_tri.stride(1), x_tri.stride(0),
# z_tri_contiguous, z_tri_contiguous.stride(0), z_tri_contiguous.stride(1),
# BLOCK_M=shape[0], BLOCK_N=shape[1])
# # numpy result
# z_ref = x.transpose(*perm)
# # compare
# triton.testing.assert_almost_equal(z_tri, z_ref)
# triton.testing.assert_almost_equal(z_tri_contiguous, z_ref)
# # parse ptx to make sure ld/st are vectorized
# ptx = pgm.asm['ptx']
# assert 'ld.global.v4' in ptx
# assert 'st.global.v4' in ptx
# ptx = pgm_contiguous.asm['ptx']
# assert 'ld.global.v4' in ptx
# assert 'st.global.v4' in ptx
# triton kernel
@triton.jit
def kernel(X, stride_xm, stride_xn,
Z, stride_zm, stride_zn,
BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr):
off_m = tl.arange(0, BLOCK_M)
off_n = tl.arange(0, BLOCK_N)
Xs = X + off_m[:, None] * stride_xm + off_n[None, :] * stride_xn
Zs = Z + off_m[:, None] * stride_zm + off_n[None, :] * stride_zn
tl.store(Zs, tl.load(Xs))
# input
x = numpy_random(shape, dtype_str=dtype_str)
# triton result
z_tri = to_triton(np.empty_like(x), device=device, dst_type=dtype_str)
z_tri_contiguous = to_triton(np.empty_like(x), device=device, dst_type=dtype_str)
x_tri = to_triton(x, device=device, dst_type=dtype_str)
pgm = kernel[(1, 1)](x_tri, x_tri.stride(0), x_tri.stride(1),
z_tri, z_tri.stride(1), z_tri.stride(0),
BLOCK_M=shape[0], BLOCK_N=shape[1])
pgm_contiguous = kernel[(1, 1)](x_tri, x_tri.stride(1), x_tri.stride(0),
z_tri_contiguous, z_tri_contiguous.stride(0), z_tri_contiguous.stride(1),
BLOCK_M=shape[0], BLOCK_N=shape[1])
# numpy result
z_ref = x.transpose(*perm)
# compare
triton.testing.assert_almost_equal(z_tri, z_ref)
triton.testing.assert_almost_equal(z_tri_contiguous, z_ref)
# parse ptx to make sure ld/st are vectorized
ptx = pgm.asm['ptx']
assert 'ld.global.v4' in ptx
assert 'st.global.v4' in ptx
ptx = pgm_contiguous.asm['ptx']
assert 'ld.global.v4' in ptx
assert 'st.global.v4' in ptx
# # ---------------
# # test dot