[RUNTIME] Lower-level interface for executing functions
This commit is contained in:
committed by
Philippe Tillet
parent
f4f216b88a
commit
acff1b5e05
@@ -33,8 +33,10 @@ endif()
|
||||
if(BUILD_PYTHON_MODULE)
|
||||
message(STATUS "Adding Python module")
|
||||
# PyBind11 wrapper source file
|
||||
set(PYTHON_SRC bindings.cc)
|
||||
set(PYTHON_SRC bindings.cc launch.cc)
|
||||
set_source_files_properties(launch.cc PROPERTIES COMPILE_FLAGS "-std=c++14 -D_GLIBCXX_USE_CXX11_ABI=0")
|
||||
include_directories("." ${PYTHON_INCLUDE_DIRS})
|
||||
link_directories(${PYTHON_LINK_DIRS})
|
||||
endif()
|
||||
|
||||
|
||||
@@ -43,3 +45,6 @@ file(GLOB_RECURSE LIBTRITON_SRC lib/*.cc)
|
||||
add_library(triton SHARED ${LIBTRITON_SRC} ${PYTHON_SRC})
|
||||
target_link_libraries(triton ${LLVM_LIBRARIES})
|
||||
|
||||
if(BUILD_PYTHON_MODULE)
|
||||
target_link_libraries(triton ${TORCH_LIBRARIES})
|
||||
endif()
|
||||
|
@@ -32,7 +32,7 @@ public:
|
||||
driver::context* context() const;
|
||||
// methods
|
||||
virtual void synchronize() = 0;
|
||||
virtual void enqueue(driver::kernel* kernel, std::array<size_t, 3> grid, std::array<size_t, 3> block, std::vector<event> const * = NULL, event *event = NULL) = 0;
|
||||
virtual void enqueue(driver::kernel* kernel, std::array<size_t, 3> grid, std::array<size_t, 3> block, std::vector<event> const * = NULL, event *event = NULL, void **extra = NULL) = 0;
|
||||
virtual void write(driver::buffer* buf, bool blocking, std::size_t offset, std::size_t size, void const* ptr) = 0;
|
||||
virtual void read(driver::buffer* buf, bool blocking, std::size_t offset, std::size_t size, void* ptr) = 0;
|
||||
// template helpers
|
||||
@@ -53,7 +53,7 @@ public:
|
||||
|
||||
// Overridden
|
||||
void synchronize();
|
||||
void enqueue(driver::kernel* kernel, std::array<size_t, 3> grid, std::array<size_t, 3> block, std::vector<event> const *, event *event);
|
||||
void enqueue(driver::kernel* kernel, std::array<size_t, 3> grid, std::array<size_t, 3> block, std::vector<event> const *, event *event, void **extra);
|
||||
void write(driver::buffer* buf, bool blocking, std::size_t offset, std::size_t size, void const* ptr);
|
||||
void read(driver::buffer* buf, bool blocking, std::size_t offset, std::size_t size, void* ptr);
|
||||
};
|
||||
@@ -66,7 +66,7 @@ public:
|
||||
|
||||
// Overridden
|
||||
void synchronize();
|
||||
void enqueue(driver::kernel* kernel, std::array<size_t, 3> grid, std::array<size_t, 3> block, std::vector<event> const *, event *event);
|
||||
void enqueue(driver::kernel* kernel, std::array<size_t, 3> grid, std::array<size_t, 3> block, std::vector<event> const *, event *event, void **extra);
|
||||
void write(driver::buffer* buf, bool blocking, std::size_t offset, std::size_t size, void const* ptr);
|
||||
void read(driver::buffer* buf, bool blocking, std::size_t offset, std::size_t size, void* ptr);
|
||||
};
|
||||
@@ -80,7 +80,7 @@ public:
|
||||
|
||||
// Overridden
|
||||
void synchronize();
|
||||
void enqueue(driver::kernel* kernel, std::array<size_t, 3> grid, std::array<size_t, 3> block, std::vector<event> const *, event *event);
|
||||
void enqueue(driver::kernel* kernel, std::array<size_t, 3> grid, std::array<size_t, 3> block, std::vector<event> const *, event *event, void **extra);
|
||||
void write(driver::buffer* buf, bool blocking, std::size_t offset, std::size_t size, void const* ptr);
|
||||
void read(driver::buffer* buf, bool blocking, std::size_t offset, std::size_t size, void* ptr);
|
||||
};
|
||||
|
@@ -40,6 +40,7 @@ enum attribute_kind_t {
|
||||
noalias,
|
||||
aligned,
|
||||
multiple_of,
|
||||
retune,
|
||||
not_implemented
|
||||
};
|
||||
|
||||
@@ -113,6 +114,7 @@ public:
|
||||
// attributes
|
||||
void add_attr(unsigned arg_id, attribute attr) { attrs_[arg_id].insert(attr); }
|
||||
const attr_map_t &attrs() { return attrs_; }
|
||||
bool has_attr(unsigned arg_id) const { return attrs_.find(arg_id) != attrs_.end(); }
|
||||
std::set<attribute> get_attributes(argument* arg) { return attrs_[arg->get_arg_no() + 1]; }
|
||||
|
||||
// visitor
|
||||
|
@@ -64,7 +64,8 @@ public:
|
||||
ALIGNED,
|
||||
NOALIAS,
|
||||
READONLY,
|
||||
WRITEONLY
|
||||
WRITEONLY,
|
||||
RETUNE,
|
||||
};
|
||||
|
||||
KindT kind;
|
||||
|
@@ -3,7 +3,7 @@
|
||||
#ifndef _TRITON_RUNTIME_FUNCTION_H_
|
||||
#define _TRITON_RUNTIME_FUNCTION_H_
|
||||
|
||||
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <memory>
|
||||
@@ -62,6 +62,7 @@ public:
|
||||
typedef std::pair<std::string, std::vector<std::string>> define_t;
|
||||
std::vector<define_t> defines;
|
||||
std::vector<int> num_warps;
|
||||
std::vector<int> recompile_key;
|
||||
};
|
||||
|
||||
struct options_t {
|
||||
@@ -94,19 +95,25 @@ private:
|
||||
// accessors
|
||||
const options_t opt() const { return opt_; }
|
||||
const driver::module* parent() const { return &*parent_; }
|
||||
const driver::kernel* bin() const { return &*bin_; }
|
||||
arg_type param_ty(size_t i) const { return param_tys_.at(i);}
|
||||
const std::vector<arg_type>& param_tys() const { return param_tys_; }
|
||||
|
||||
std::vector<int> retune() const { return retune_; }
|
||||
// entry points
|
||||
void operator()(driver::stream *stream, const grid_t& grid, const std::vector<arg>& args) const;
|
||||
void operator()(driver::stream *stream, const grid_t& grid, void **args, size_t args_size) const;
|
||||
|
||||
private:
|
||||
std::shared_ptr<driver::kernel> bin_;
|
||||
std::shared_ptr<driver::module> parent_;
|
||||
std::vector<arg_type> param_tys_;
|
||||
std::vector<int> retune_;
|
||||
options_t opt_;
|
||||
std::string name_;
|
||||
};
|
||||
|
||||
private:
|
||||
typedef std::pair<driver::device*, std::vector<int64_t>> cache_key_t;
|
||||
typedef std::pair<driver::device*, std::vector<int32_t>> cache_key_t;
|
||||
|
||||
private:
|
||||
// cache
|
||||
@@ -118,16 +125,15 @@ private:
|
||||
caller *make(driver::stream *stream, options_t opt);
|
||||
void precompile(driver::stream *stream, const options_space_t& tuning_space);
|
||||
// autotune
|
||||
function::cache_key_t get_key(driver::stream *stream, const std::vector<arg>& args);
|
||||
caller* autotune(driver::stream *stream, const grid_fn_ty& grid, const std::vector<arg> &args);
|
||||
caller* autotune(driver::stream *stream, const grid_fn_ty& grid, void **args, size_t args_size);
|
||||
|
||||
public:
|
||||
static std::string preheader();
|
||||
|
||||
public:
|
||||
function(const std::string& src, const options_space_t& opt, const std::string &cache_ref = "");
|
||||
void operator()(const std::vector<arg>& args, const grid_t& grid, driver::stream* stream);
|
||||
void operator()(const std::vector<arg>& args, const grid_fn_ty& grid, driver::stream *stream);
|
||||
void operator()(void** args, size_t args_size, const grid_t& grid, driver::stream* stream);
|
||||
void operator()(void** args, size_t args_size, const grid_fn_ty& grid, driver::stream *stream);
|
||||
void set_cst(const std::string& name, void* data, size_t n_bytes);
|
||||
|
||||
private:
|
||||
@@ -138,6 +144,8 @@ private:
|
||||
options_space_t opt_;
|
||||
std::set<options_t> compiled_;
|
||||
std::map<options_t, std::unique_ptr<caller>> callers_;
|
||||
std::vector<int> args_off_;
|
||||
size_t args_size_;
|
||||
// caching
|
||||
std::string cache_ref_;
|
||||
std::string cache_path_;
|
||||
|
@@ -177,6 +177,7 @@ inline llvm::Attribute llvm_attr(llvm::LLVMContext& ctx, ir::attribute attr) {
|
||||
case ir::readonly: return llvm::Attribute::get(ctx, llvm::Attribute::ReadOnly);
|
||||
case ir::writeonly: return llvm::Attribute::get(ctx, llvm::Attribute::WriteOnly);
|
||||
case ir::aligned: return llvm::Attribute::get(ctx, llvm::Attribute::Alignment, attr.get_value());
|
||||
case ir::retune: return llvm::Attribute::get(ctx, llvm::Attribute::None);
|
||||
default: throw std::runtime_error("cannot convert ir::attribute_t to llvm::Attribute");
|
||||
}
|
||||
}
|
||||
|
@@ -79,7 +79,7 @@ void host_stream::synchronize() {
|
||||
|
||||
}
|
||||
|
||||
void host_stream::enqueue(driver::kernel* kernel, std::array<size_t, 3> grid, std::array<size_t, 3> block, std::vector<event> const *, event* event) {
|
||||
void host_stream::enqueue(driver::kernel* kernel, std::array<size_t, 3> grid, std::array<size_t, 3> block, std::vector<event> const *, event* event, void **extra) {
|
||||
driver::host_kernel* hst_kernel = (host_kernel*)kernel;
|
||||
llvm::ExecutionEngine* engine = kernel->module()->hst()->engine;
|
||||
void (*fn)(char**, int32_t, int32_t, int32_t) = (void(*)(char**, int32_t, int32_t, int32_t))engine->getFunctionAddress("main");
|
||||
@@ -112,7 +112,7 @@ void cl_stream::synchronize() {
|
||||
check(dispatch::clFinish(*cl_));
|
||||
}
|
||||
|
||||
void cl_stream::enqueue(driver::kernel* kernel, std::array<size_t, 3> grid, std::array<size_t, 3> block, std::vector<event> const *, event* event) {
|
||||
void cl_stream::enqueue(driver::kernel* kernel, std::array<size_t, 3> grid, std::array<size_t, 3> block, std::vector<event> const *, event* event, void **extra) {
|
||||
std::array<size_t, 3> global = {grid[0]*block[0], grid[1]*block[1], grid[2]*block[2]};
|
||||
check(dispatch::clEnqueueNDRangeKernel(*cl_, *kernel->cl(), grid.size(), NULL, (const size_t*)global.data(), (const size_t*)block.data(), 0, NULL, NULL));
|
||||
}
|
||||
@@ -149,12 +149,11 @@ void cu_stream::synchronize() {
|
||||
dispatch::cuStreamSynchronize(*cu_);
|
||||
}
|
||||
|
||||
void cu_stream::enqueue(driver::kernel* kernel, std::array<size_t, 3> grid, std::array<size_t, 3> block, std::vector<event> const *, event* event) {
|
||||
driver::cu_kernel* cu_kernel = (driver::cu_kernel*)kernel;
|
||||
void cu_stream::enqueue(driver::kernel* kernel, std::array<size_t, 3> grid, std::array<size_t, 3> block, std::vector<event> const *, event* event, void** extra) {
|
||||
cu_context::context_switcher ctx_switch(*ctx_);
|
||||
if(event)
|
||||
dispatch::cuEventRecord(event->cu()->first, *cu_);
|
||||
dispatch::cuLaunchKernel(*kernel->cu(), grid[0], grid[1], grid[2], block[0], block[1], block[2], 0, *cu_,(void**)cu_kernel->cu_params(), NULL);
|
||||
dispatch::cuLaunchKernel(*kernel->cu(), grid[0], grid[1], grid[2], block[0], block[1], block[2], 0, *cu_, nullptr, extra);
|
||||
if(event)
|
||||
dispatch::cuEventRecord(event->cu()->second, *cu_);
|
||||
}
|
||||
|
@@ -630,6 +630,8 @@ ir::attribute Generator::GenIRAttr(ASTNode::Attr attr) {
|
||||
return ir::attribute(ir::readonly);
|
||||
if(attr.kind == ASTNode::Attr::WRITEONLY)
|
||||
return ir::attribute(ir::writeonly);
|
||||
if(attr.kind == ASTNode::Attr::RETUNE)
|
||||
return ir::attribute(ir::retune);
|
||||
error_not_implemented("attribute " + std::to_string(attr.kind) + " not implemented");
|
||||
return ir::attribute(ir::not_implemented);
|
||||
}
|
||||
|
@@ -2778,6 +2778,8 @@ ASTNode::Attr Parser::ParseAttribute() {
|
||||
ret.kind = ASTNode::Attr::MULTIPLEOF;
|
||||
else if(name == "noalias")
|
||||
ret.kind = ASTNode::Attr::NOALIAS;
|
||||
else if(name == "retune")
|
||||
ret.kind = ASTNode::Attr::RETUNE;
|
||||
else
|
||||
Error(tok, "unknown attribute kind");
|
||||
// set exprs
|
||||
|
@@ -151,27 +151,23 @@ function::caller::caller(ir::function *ir,
|
||||
bin_.reset(driver::kernel::create(&*parent, name_.c_str()));
|
||||
// extract signature
|
||||
ir::function_type* ty = ir->get_fn_type();
|
||||
for(size_t i = 0; i < ty->get_num_params(); i++)
|
||||
for(size_t i = 0; i < ty->get_num_params(); i++){
|
||||
param_tys_.push_back(convert(ty->get_param_ty(i)));
|
||||
if(!ir->has_attr(i+1))
|
||||
continue;
|
||||
for(ir::attribute attr: ir->attrs().at(i + 1))
|
||||
if(attr.get_kind() == ir::retune)
|
||||
retune_.push_back(i);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void function::caller::operator ()(driver::stream *stream, const grid_t& _grid, const std::vector<arg>& args) const {
|
||||
if(args.size() != param_tys_.size())
|
||||
throw std::runtime_error("invalid number of arguments");
|
||||
// set arguments
|
||||
for(size_t i = 0; i < args.size(); i++){
|
||||
arg arg_i = args.at(i);
|
||||
arg_type ty = arg_i.type();
|
||||
if(ty != param_tys_.at(i))
|
||||
throw std::runtime_error("invalid type for argument " + std::to_string(i));
|
||||
if(ty == BUFFER_T){
|
||||
driver::buffer* buf = *((driver::buffer**)arg_i.data());
|
||||
bin_->setArg(i, buf->size() == 0 ? nullptr : buf);
|
||||
}
|
||||
else
|
||||
bin_->setArg(i, size_of(ty), arg_i.data());
|
||||
}
|
||||
void function::caller::operator ()(driver::stream *stream, const grid_t& _grid, void** args, size_t args_size) const {
|
||||
void *config[] = {
|
||||
CU_LAUNCH_PARAM_BUFFER_POINTER, args,
|
||||
CU_LAUNCH_PARAM_BUFFER_SIZE, &args_size,
|
||||
CU_LAUNCH_PARAM_END
|
||||
};
|
||||
// set grid
|
||||
if(_grid.size() > 3)
|
||||
throw std::runtime_error("grid size must be no greater than 3");
|
||||
@@ -179,7 +175,7 @@ void function::caller::operator ()(driver::stream *stream, const grid_t& _grid,
|
||||
for(size_t i = 0; i < 3; i++)
|
||||
grid[i] = (i < _grid.size()) ? _grid[i] : 1;
|
||||
// enqueue
|
||||
stream->enqueue(&*bin_, grid, {opt_.num_warps * 32, 1, 1});
|
||||
stream->enqueue(&*bin_, grid, {opt_.num_warps * 32, 1, 1}, NULL, NULL, config);
|
||||
}
|
||||
|
||||
|
||||
@@ -251,20 +247,6 @@ std::unique_ptr<driver::module> function::make_bin(ir::module &module,
|
||||
|
||||
// create Binary from options
|
||||
function::caller* function::make(driver::stream *stream, options_t opt) {
|
||||
// cache path
|
||||
std::string cache_path = cache_path_ + opt.to_str() + ".ptx";
|
||||
int ref_mtime = tools::mtime(cache_ref_);
|
||||
int ptx_mtime = tools::mtime(cache_path);
|
||||
// if cached ptx is newer than reference library
|
||||
if(!ref_mtime || !ptx_mtime || ref_mtime < ptx_mtime){
|
||||
std::ifstream ifs(cache_path);
|
||||
// file is empty -- invalid
|
||||
if(ifs && ifs.peek() == std::ifstream::traits_type::eof())
|
||||
return nullptr;
|
||||
// load cached caller
|
||||
if(ifs)
|
||||
return new caller(stream->context(), ifs, opt);
|
||||
}
|
||||
// pre-process
|
||||
TokenSequence tokens;
|
||||
Preprocessor cpp(&src_, true);
|
||||
@@ -281,18 +263,11 @@ function::caller* function::make(driver::stream *stream, options_t opt) {
|
||||
try{
|
||||
bin = make_bin(*ir, stream->context(), opt);
|
||||
}catch(const std::runtime_error&){
|
||||
if(!cache_path_.empty())
|
||||
std::ofstream ofs(cache_path);
|
||||
return nullptr;
|
||||
}
|
||||
// create callable
|
||||
ir::function *tmp = ir->get_function_list()[0];
|
||||
caller* ret = new caller(tmp, std::move(bin), opt);
|
||||
// serialize callable
|
||||
if(!cache_path_.empty()){
|
||||
std::ofstream ofs(cache_path);
|
||||
ret->write(ofs);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
@@ -330,48 +305,20 @@ void function::precompile(driver::stream* stream,
|
||||
throw std::runtime_error("could not compile kernel");
|
||||
}
|
||||
|
||||
// return auto-tuning key for given function arguments
|
||||
function::cache_key_t function::get_key(driver::stream *stream, const std::vector<arg>& args) {
|
||||
cache_key_t ret;
|
||||
ret.first = stream->context()->device();
|
||||
for(size_t i = 0; i < args.size(); i++){
|
||||
arg_type ty = args.at(i).type();
|
||||
if(!is_int_type(ty))
|
||||
continue;
|
||||
long val = 0;
|
||||
std::memcpy((void*)&val, args.at(i).data(), size_of(ty));
|
||||
ret.second.push_back(val);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
// returns program with best compilation options for given parameter
|
||||
function::caller* function::autotune(driver::stream* stream, const grid_fn_ty& grid_fn,
|
||||
const std::vector<arg>& args) {
|
||||
void** args, size_t args_size) {
|
||||
// fast path -- no autotuning necessary
|
||||
if(callers_.size() == 1)
|
||||
return &*callers_.begin()->second;
|
||||
// slow path -- autotuning necessary
|
||||
// copy buffer argument so that auto-tuning doesn't corrupt data
|
||||
std::list<std::shared_ptr<driver::cu_buffer>> copies;
|
||||
std::vector<arg> _args = args;
|
||||
for(size_t i = 0; i < args.size(); i++)
|
||||
if(_args[i].type() == BUFFER_T){
|
||||
driver::buffer* old = _args[i].buffer();
|
||||
size_t size = old->size();
|
||||
// only copy scalars
|
||||
// TODO: change that
|
||||
if(size != 4 && size != 2)
|
||||
continue;
|
||||
copies.push_back(std::make_shared<driver::cu_buffer>(old->context(), size));
|
||||
_args[i] = arg(copies.back().get());
|
||||
}
|
||||
// TODO" copy buffer argument so that auto-tuning doesn't corrupt data
|
||||
double best_ts = INFINITY;
|
||||
caller* ret = nullptr;
|
||||
for(auto &x : callers_){
|
||||
if(x.second == nullptr)
|
||||
throw std::runtime_error("configuration not compiled");
|
||||
caller* current = &*x.second;
|
||||
double ts = tools::bench([&]() { (*current)(stream, grid_fn(x.first), args); },
|
||||
double ts = tools::bench([&]() { (*current)(stream, grid_fn(x.first), args, args_size); },
|
||||
stream, true);
|
||||
ret = (ts < best_ts) ? current : ret;
|
||||
best_ts = std::min(ts, best_ts);
|
||||
@@ -397,6 +344,7 @@ std::string function::preheader() {
|
||||
#define __noalias __attribute__((noalias))
|
||||
#define __aligned(A) __attribute__((aligned(A)))
|
||||
#define __multipleof(A) __attribute__((multipleof(A)))
|
||||
#define __retune __attribute__((retune))
|
||||
|
||||
#define F32_INFINITY bitcast<float>(0x7F800000)
|
||||
#define F16_INFINITY bitcast<half>((int16)0x7C00)
|
||||
@@ -456,27 +404,35 @@ function::function(const std::string &src,
|
||||
src_ = preheader() + src_;
|
||||
}
|
||||
|
||||
void function::operator()(const std::vector<arg>& args,
|
||||
const grid_fn_ty& grid_fn,
|
||||
driver::stream *stream) {
|
||||
void function::operator()(void** args, size_t args_size, const grid_fn_ty& grid_fn, driver::stream *stream) {
|
||||
// pre-compile kernels
|
||||
if(callers_.empty())
|
||||
if(callers_.empty()){
|
||||
precompile(stream, opt_);
|
||||
size_t cumsum = 0;
|
||||
for(arg_type ty: callers_.begin()->second->param_tys()){
|
||||
args_off_.push_back(cumsum);
|
||||
cumsum += size_of(ty);
|
||||
}
|
||||
}
|
||||
// re-tuning key
|
||||
cache_key_t key;
|
||||
key.first = stream->context()->device();
|
||||
key.second = callers_.begin()->second->retune();
|
||||
// auto-tune if necessary
|
||||
auto key = get_key(stream, args);
|
||||
auto it = cache_.find(key);
|
||||
if(it == cache_.end()){
|
||||
auto best = autotune(stream, grid_fn, args);
|
||||
auto best = autotune(stream, grid_fn, args, args_size);
|
||||
it = cache_.insert({key, best}).first;
|
||||
}
|
||||
// run
|
||||
(*it->second)(stream, grid_fn(it->second->opt()), args);
|
||||
(*it->second)(stream, grid_fn(it->second->opt()), args, args_size);
|
||||
}
|
||||
|
||||
void function::operator()(const std::vector<arg>& args,
|
||||
void function::operator()(void** args,
|
||||
size_t args_size,
|
||||
const grid_t& grid,
|
||||
driver::stream *stream) {
|
||||
return this->operator()(args, [&grid](const options_t&){ return grid; }, stream);
|
||||
return this->operator()(args, args_size, [&grid](const options_t&){ return grid; }, stream);
|
||||
}
|
||||
|
||||
|
||||
|
@@ -8,7 +8,9 @@ class _conv(torch.autograd.Function):
|
||||
TYPE *C __noalias __aligned(16),
|
||||
float alpha,
|
||||
// equivalent matmul
|
||||
int M, int N, int K,
|
||||
int M __retune,
|
||||
int N __retune,
|
||||
int K __retune,
|
||||
// convolution properties
|
||||
int pad_h, int pad_w, int stride_h, int stride_w,
|
||||
// pointer increment
|
||||
@@ -197,4 +199,4 @@ c = conv(a, b, pad, stride, time)
|
||||
print((cc - c).abs().max() / max(cc.max(), c.max()))
|
||||
print(time[0], 2*Z*H*W*CI*CO*R*S/(time[0]*1e-9)*1e-12)
|
||||
#zc = torch.matmul(a,b)
|
||||
#zc_ = dot(a,b)
|
||||
#zc_ = dot(a,b)
|
||||
|
@@ -4,7 +4,9 @@ import triton
|
||||
class _copy(torch.autograd.Function):
|
||||
src = """
|
||||
__global__ void copy(TYPE * X, TYPE * Y,
|
||||
int M, int N, int ldx __multipleof(8)) {
|
||||
int M __retune,
|
||||
int N __retune,
|
||||
int ldx __multipleof(8)) {
|
||||
// extract program ID
|
||||
int pidm = get_program_id(0); //(1)
|
||||
int pidn = get_program_id(1); //(2)
|
||||
|
@@ -7,7 +7,9 @@ class _dot(torch.autograd.Function):
|
||||
TYPE *B __noalias __readonly __aligned(16),
|
||||
TYPE *C __noalias __aligned(16),
|
||||
float alpha,
|
||||
int M, int N, int K,
|
||||
int M __retune,
|
||||
int N __retune,
|
||||
int K __retune,
|
||||
int lda __multipleof(8),
|
||||
int ldb __multipleof(8),
|
||||
int ldc __multipleof(8)) {
|
||||
@@ -128,4 +130,4 @@ b = torch.rand((K, N)).cuda()
|
||||
#zc = torch.matmul(a,b)
|
||||
zc_ = dot(a,b)
|
||||
|
||||
#print(torch.allclose(zc, zc_))
|
||||
#print(torch.allclose(zc, zc_))
|
||||
|
@@ -4,7 +4,9 @@ import triton
|
||||
class _transpose(torch.autograd.Function):
|
||||
src = """
|
||||
__global__ void transpose(TYPE * X, TYPE * Y,
|
||||
int M, int N, int ldx __multipleof(8), int ldy __multipleof(8)) {
|
||||
int M __retune,
|
||||
int N __retune,
|
||||
int ldx __multipleof(8), int ldy __multipleof(8)) {
|
||||
// extract program ID
|
||||
int pidm = get_program_id(0); //(1)
|
||||
int pidn = get_program_id(1); //(2)
|
||||
|
@@ -8,9 +8,11 @@ import distutils
|
||||
import glob
|
||||
from distutils.version import LooseVersion
|
||||
from setuptools import setup, Extension, find_packages
|
||||
from torch.utils.cpp_extension import include_paths, library_paths
|
||||
from setuptools.command.build_ext import build_ext
|
||||
from setuptools.command.test import test as TestCommand
|
||||
import distutils.spawn
|
||||
import torch
|
||||
|
||||
|
||||
def find_llvm():
|
||||
@@ -58,12 +60,17 @@ class CMakeBuild(build_ext):
|
||||
# python directories
|
||||
python_include_dirs = distutils.sysconfig.get_python_inc()
|
||||
python_lib_dirs = distutils.sysconfig.get_config_var('LIBDIR')
|
||||
torch_include_dirs = include_paths(True)
|
||||
torch_library_dirs = library_paths(True)
|
||||
abi = torch._C._GLIBCXX_USE_CXX11_ABI
|
||||
cmake_args = ['-DCMAKE_LIBRARY_OUTPUT_DIRECTORY=' + extdir,
|
||||
'-DBUILD_TESTS=OFF',
|
||||
'-DBUILD_PYTHON_MODULE=ON',
|
||||
#'-DPYTHON_EXECUTABLE=' + sys.executable,
|
||||
#'-DCMAKE_VERBOSE_MAKEFILE:BOOL=ON,
|
||||
'-DPYTHON_INCLUDE_DIRS=' + python_include_dirs,
|
||||
'-DPYTHON_INCLUDE_DIRS=' + ';'.join([python_include_dirs] + include_paths(True)),
|
||||
'-DPYTHON_LINK_DIRS=' + ';'.join(library_paths(True)),
|
||||
'-DTORCH_LIBRARIES=c10;c10_cuda;torch;torch_cuda;torch_cpu;torch_python;triton',
|
||||
'-DLLVM_CONFIG=' + find_llvm()]
|
||||
# configuration
|
||||
cfg = 'Debug' if self.debug else 'Release'
|
||||
@@ -80,8 +87,6 @@ class CMakeBuild(build_ext):
|
||||
build_args += ['--', '-j4']
|
||||
|
||||
env = os.environ.copy()
|
||||
env['CXXFLAGS'] = '{} -DVERSION_INFO=\\"{}\\"'.format(env.get('CXXFLAGS', ''),
|
||||
self.distribution.get_version())
|
||||
if not os.path.exists(self.build_temp):
|
||||
os.makedirs(self.build_temp)
|
||||
sourcedir = os.path.abspath(os.path.join(os.path.dirname(__file__), 'src'))
|
||||
|
@@ -3,20 +3,13 @@
|
||||
#include <pybind11/stl.h>
|
||||
#include <pybind11/functional.h>
|
||||
#include <string>
|
||||
#include <regex>
|
||||
#include <algorithm>
|
||||
#include "triton/runtime/function.h"
|
||||
#include "triton/runtime/arg.h"
|
||||
#include "triton/lang/code_gen.h"
|
||||
#include "triton/lang/parser.h"
|
||||
#include "triton/lang/cpp.h"
|
||||
#include "triton/driver/device.h"
|
||||
#include "triton/driver/stream.h"
|
||||
#include "triton/driver/kernel.h"
|
||||
#include "triton/driver/module.h"
|
||||
#include "triton/ir/module.h"
|
||||
#include "triton/ir/function.h"
|
||||
#include "triton/tools/bench.hpp"
|
||||
|
||||
using namespace triton;
|
||||
|
||||
@@ -83,196 +76,6 @@ int64_t retrieve_scalar(size_t id) {
|
||||
return i64scalar_map.at(id);
|
||||
}
|
||||
|
||||
/* TF source-code generation */
|
||||
|
||||
inline std::string to_tf_ty(ir::type *ty) {
|
||||
if(ty->is_integer_ty(1))
|
||||
return "bool";
|
||||
if(ty->is_integer_ty(8))
|
||||
return "int8";
|
||||
if(ty->is_integer_ty(16))
|
||||
return "int16";
|
||||
if(ty->is_integer_ty(32))
|
||||
return "int32";
|
||||
if(ty->is_integer_ty(64))
|
||||
return "int64";
|
||||
if(ty->is_half_ty())
|
||||
return "float16";
|
||||
if(ty->is_float_ty())
|
||||
return "float";
|
||||
if(ty->is_double_ty())
|
||||
return "double";
|
||||
if(ty->is_pointer_ty())
|
||||
return "Tensor";
|
||||
throw std::runtime_error("unknown type");
|
||||
}
|
||||
|
||||
inline std::string to_tf_scalar_ty(ir::type *ty) {
|
||||
if(ty->is_pointer_ty())
|
||||
return to_tf_ty(ty->get_pointer_element_ty());
|
||||
else {
|
||||
return to_tf_ty(ty);
|
||||
}
|
||||
}
|
||||
|
||||
inline std::string ref_to_tf_ty(ir::type *ty) {
|
||||
std::string res = to_tf_ty(ty);
|
||||
if(ty->is_pointer_ty())
|
||||
res = "const " + res + "&";
|
||||
return res;
|
||||
}
|
||||
|
||||
std::string tf_normalize(const std::string& name) {
|
||||
std::string ret = name;
|
||||
auto tolower = [](char c) { return std::tolower(c);};
|
||||
std::transform(ret.begin(), ret.end(), ret.begin(), tolower);
|
||||
return ret;
|
||||
}
|
||||
|
||||
struct tf_alloc_t{
|
||||
enum type_t{
|
||||
OUTPUT,
|
||||
TEMP
|
||||
};
|
||||
|
||||
tf_alloc_t(const std::string& _name, type_t _type)
|
||||
: name(_name), type(_type), tf_name(tf_normalize(_name)){ }
|
||||
|
||||
std::string tf_name;
|
||||
std::string name;
|
||||
type_t type;
|
||||
size_t shape_id;
|
||||
};
|
||||
|
||||
typedef std::vector<tf_alloc_t> alloc_map_t;
|
||||
|
||||
|
||||
void gen_extract_inputs(std::ostream &os, const std::vector<ir::argument*>& args, const alloc_map_t& allocs) {
|
||||
for(unsigned i = 0; i < args.size(); i++){
|
||||
ir::value *arg = args[i];
|
||||
const std::string& name = arg->get_name();
|
||||
std::string ty = to_tf_ty(arg->get_type());
|
||||
if(!arg->get_type()->is_pointer_ty())
|
||||
os << " " << ty << " " << name << " = context->input(" << i << ").scalar<" << ty << ">()();\n ";
|
||||
else if(std::find_if(allocs.begin(), allocs.end(),
|
||||
[&](tf_alloc_t x) {
|
||||
return x.name == name;
|
||||
}) == allocs.end())
|
||||
os << " const Tensor* " << name << " = &context->input(" << i << ");\n ";
|
||||
else
|
||||
os << " Tensor* " << name << " = nullptr;\n ";
|
||||
}
|
||||
}
|
||||
|
||||
void gen_set_outputs(std::ostream &os, const std::vector<ir::argument*>& args, const alloc_map_t& allocs) {
|
||||
// initialize shapes
|
||||
for(const auto& x: allocs)
|
||||
os << " TensorShape " << x.name << "_shape;\n ";
|
||||
for(const auto& x: allocs)
|
||||
os << " const Tensor& " << x.name << "_shape_tensor = context->input(" << x.shape_id << ");\n ";
|
||||
for(const auto& x: allocs)
|
||||
os << " const int32* " << x.name << "_shape_data = (const int32*)" << x.name << "_shape_tensor.tensor_data().data();\n ";
|
||||
for(const auto& x: allocs)
|
||||
os << " size_t " << x.name << "_rank = " << x.name << "_shape_tensor.dim_size(0);\n ";
|
||||
for(const auto& x: allocs)
|
||||
os << " for(size_t d = 0; d < " << x.name << "_rank ; d++) "
|
||||
<< x.name << "_shape.AddDim(" << x.name << "_shape_data[d]);\n ";
|
||||
|
||||
// allocate
|
||||
int output = 0;
|
||||
for(const auto& x: allocs){
|
||||
if(x.type == tf_alloc_t::OUTPUT)
|
||||
os << " OP_REQUIRES_OK(context, context->allocate_output(" << output++ << ", " << x.name << "_shape, &" << x.name << "));\n ";
|
||||
else
|
||||
os << " OP_REQUIRES_OK(context, context->allocate_temp(" << x.name << "_type, " << x.name << "_shape, " << x.name << "));\n ";
|
||||
}
|
||||
}
|
||||
|
||||
void gen_make_handles(std::ostream &os, const std::vector<ir::argument*>& args) {
|
||||
for(unsigned i = 0; i < args.size(); i++){
|
||||
ir::argument *arg = args[i];
|
||||
if(!arg->get_type()->is_pointer_ty())
|
||||
continue;
|
||||
const std::string& name = arg->get_name();
|
||||
os << " drv::cu_buffer cu_" + name + "(ctx, " + name + "->nbytes(), (CUdeviceptr)" + name + "->tensor_data().data(), false);\n ";
|
||||
}
|
||||
}
|
||||
|
||||
void gen_make_launch_function(std::ostream &os, const std::vector<ir::argument*>& args) {
|
||||
os << " std::function<void()> run = [&](){\n ";
|
||||
os << " (*id_fn_map.at(id_))({";
|
||||
for(unsigned i = 0; i < args.size() ; i++){
|
||||
ir::argument *arg = args[i];
|
||||
std::string name = arg->get_name();
|
||||
if(arg->get_type()->is_pointer_ty())
|
||||
name = "&cu_" + name;
|
||||
if(i > 0)
|
||||
os << ", ";
|
||||
os << name;
|
||||
}
|
||||
os << "}, *id_grid_map.at(id_), stream);\n ";
|
||||
os << " };\n ";
|
||||
os << " run();\n ";
|
||||
os << " if(bench_ > 0)\n ";
|
||||
os << " i64scalar_map[bench_id_] = triton::tools::bench(run, stream);\n ";
|
||||
}
|
||||
|
||||
void gen_tf_register_kernel_builder(std::ostream &os, const std::string &name,
|
||||
const std::string &opname,
|
||||
const std::vector<ir::argument*>& args,
|
||||
const alloc_map_t& allocs){
|
||||
|
||||
os << "REGISTER_KERNEL_BUILDER(Name(\"" + name + "\").Device(DEVICE_GPU)";
|
||||
for(size_t i = 0; i < args.size(); i++){
|
||||
ir::argument *arg = args[i];
|
||||
std::string name = tf_normalize(arg->get_name());
|
||||
if(!arg->get_type()->is_pointer_ty())
|
||||
os << ".HostMemory(\"" + name + "\")";
|
||||
}
|
||||
for(const auto& x: allocs)
|
||||
os << ".HostMemory(\"" << x.tf_name << "_shape\")";
|
||||
os << ", " + opname << ");\n";
|
||||
}
|
||||
|
||||
void gen_tf_register_op(std::ostream &os, const std::string &name,
|
||||
const std::vector<ir::argument*>& args,
|
||||
const alloc_map_t& allocs){
|
||||
|
||||
|
||||
os << "REGISTER_OP(\"" << name << "\")\n";
|
||||
for(size_t i = 0; i < args.size(); i++)
|
||||
os << " .Attr(\"T" << i << " : {bool, int8, int16, int32, int64, float16, float32, float64}\")" << std::endl;
|
||||
for(size_t i = 0; i < args.size(); i++){
|
||||
ir::argument *arg = args[i];
|
||||
std::string name = tf_normalize(arg->get_name());
|
||||
if(std::find_if(allocs.begin(), allocs.end(),
|
||||
[&](tf_alloc_t x) {
|
||||
return name == x.tf_name;
|
||||
}) == allocs.end())
|
||||
os << " .Input(\"" << name << ": T" << i << "\")\n";
|
||||
else
|
||||
os << " .Input(\"" << name << "_shape: int32\")\n";
|
||||
}
|
||||
for(const auto& x: allocs)
|
||||
if(x.type == tf_alloc_t::OUTPUT)
|
||||
os << " .Output(\"" << x.tf_name << ": T" << x.shape_id << "\")\n";
|
||||
os << " .Attr(\"id: int\")\n";
|
||||
os << " .Attr(\"bench: int\")\n";
|
||||
os << " .Attr(\"bench_id: int\")\n";
|
||||
os << " .SetShapeFn([](::tensorflow::shape_inference::InferenceContext* ctx) {\n";
|
||||
size_t current = 0;
|
||||
for(const auto& x: allocs)
|
||||
if(x.type == tf_alloc_t::OUTPUT){
|
||||
os << " shape_inference::ShapeHandle " << x.tf_name << "_handle;\n";
|
||||
os << " ctx->MakeShapeFromShapeTensor(" << x.shape_id << ", &" << x.tf_name << "_handle);\n";
|
||||
os << " ctx->set_output(" << current++ << ", " << x.tf_name << "_handle);\n";
|
||||
}
|
||||
os << " return Status::OK();\n";
|
||||
os << " })\n";
|
||||
|
||||
os << ";\n";
|
||||
}
|
||||
|
||||
void make_module(const std::string& src, ir::module* ir,
|
||||
const runtime::function::options_space_t& opt) {
|
||||
std::string copy = triton::runtime::function::preheader() + src;
|
||||
@@ -290,339 +93,6 @@ void make_module(const std::string& src, ir::module* ir,
|
||||
gen.Gen(ir);
|
||||
}
|
||||
|
||||
std::tuple<std::string,
|
||||
std::string> make_tensorflow_src(const std::string& src,
|
||||
const std::vector<std::string>& outputs,
|
||||
const std::vector<std::string>& tmp,
|
||||
const runtime::function::options_space_t& opt)
|
||||
{
|
||||
// triton-ir code-gen
|
||||
ir::context ctx;
|
||||
auto ir = std::shared_ptr<ir::module>(new ir::module("", ctx));
|
||||
make_module(src, &*ir, opt);
|
||||
|
||||
// function
|
||||
ir::function* fn = ir->get_function_list().front();
|
||||
const std::vector<ir::argument*>& args = fn->args();
|
||||
std::string name = fn->get_name();
|
||||
std::string cc_name = name;
|
||||
cc_name[0] = static_cast<char>(std::toupper(cc_name[0]));
|
||||
std::string opname = cc_name + "Op";
|
||||
|
||||
// allocation info
|
||||
alloc_map_t allocs;
|
||||
for(size_t i = 0; i < outputs.size(); i++)
|
||||
allocs.push_back(tf_alloc_t(outputs[i], tf_alloc_t::OUTPUT));
|
||||
for(size_t i = 0; i < tmp.size(); i++)
|
||||
allocs.push_back(tf_alloc_t(tmp[i], tf_alloc_t::TEMP));
|
||||
|
||||
for(auto &x: allocs){
|
||||
size_t idx;
|
||||
for(idx = 0; idx < args.size(); idx++)
|
||||
if(args[idx]->get_name() == x.name)
|
||||
break;
|
||||
if(idx == args.size())
|
||||
throw std::runtime_error("unknown output");
|
||||
x.shape_id = idx;
|
||||
}
|
||||
|
||||
std::ostringstream oss;
|
||||
oss << R"(
|
||||
#include "triton/driver/buffer.h"
|
||||
#include "triton/driver/backend.h"
|
||||
#include "triton/driver/stream.h"
|
||||
#include "triton/runtime/function.h"
|
||||
#include "triton/tools/bench.hpp"
|
||||
|
||||
#define EIGEN_USE_GPU
|
||||
#include "tensorflow/core/framework/op.h"
|
||||
#include "tensorflow/core/framework/shape_inference.h"
|
||||
#include "tensorflow/core/framework/op_kernel.h"
|
||||
|
||||
using namespace tensorflow;
|
||||
using GPUDevice = Eigen::GpuDevice;
|
||||
namespace rt = triton::runtime;
|
||||
namespace drv = triton::driver;
|
||||
|
||||
extern std::map<size_t, std::shared_ptr<rt::function::grid_fn_ty>> id_grid_map;
|
||||
extern std::map<size_t, std::shared_ptr<rt::function>> id_fn_map;
|
||||
extern std::map<size_t, int64_t> i64scalar_map;
|
||||
|
||||
class )" << opname << R"(: public OpKernel {
|
||||
public:
|
||||
explicit )" << opname << R"((OpKernelConstruction* context)
|
||||
: OpKernel(context) {
|
||||
OP_REQUIRES_OK(context, context->GetAttr("id", &id_));
|
||||
OP_REQUIRES_OK(context, context->GetAttr("bench", &bench_));
|
||||
OP_REQUIRES_OK(context, context->GetAttr("bench_id", &bench_id_));
|
||||
)";
|
||||
for(const auto& alloc: allocs)
|
||||
oss << " OP_REQUIRES_OK(context, context->GetAttr(\"T" << alloc.shape_id << "\", &" << alloc.name << "_type));\n ";
|
||||
|
||||
oss << R"(
|
||||
}
|
||||
|
||||
void Compute(OpKernelContext* context){
|
||||
|
||||
// get device/stream
|
||||
GPUDevice device = context->eigen_device<GPUDevice>();
|
||||
drv::cu_stream sstream(device.stream(), false);
|
||||
drv::context* ctx = sstream.context();
|
||||
drv::stream* stream = &sstream;
|
||||
|
||||
// extract inputs
|
||||
)";
|
||||
gen_extract_inputs(oss, args, allocs);
|
||||
oss << R"(
|
||||
// set outputs
|
||||
)";
|
||||
gen_set_outputs(oss, args, allocs);
|
||||
oss << R"(
|
||||
// wrap tensors
|
||||
)";
|
||||
gen_make_handles(oss, args);
|
||||
oss << R"(
|
||||
)";
|
||||
oss << R"(
|
||||
// launch function
|
||||
)";
|
||||
gen_make_launch_function(oss, args);
|
||||
oss << R"(
|
||||
}
|
||||
|
||||
private:
|
||||
int id_;
|
||||
int bench_;
|
||||
int64 bench_id_;
|
||||
)";
|
||||
for(const auto& alloc: allocs)
|
||||
oss << "DataType " << alloc.name << "_type;\n ";
|
||||
|
||||
oss << R"(
|
||||
};
|
||||
|
||||
// register kernel builder
|
||||
)";
|
||||
gen_tf_register_kernel_builder(oss, cc_name, opname, args, allocs);
|
||||
oss << R"(
|
||||
// register op
|
||||
)";
|
||||
gen_tf_register_op(oss, cc_name, args, allocs);
|
||||
|
||||
return std::tuple<std::string, std::string>{oss.str(), name};
|
||||
}
|
||||
|
||||
|
||||
inline std::string to_torch_ty(ir::type *ty) {
|
||||
if(ty->is_integer_ty())
|
||||
return "int64_t";
|
||||
if(ty->is_half_ty())
|
||||
return "double";
|
||||
if(ty->is_float_ty())
|
||||
return "double";
|
||||
if(ty->is_double_ty())
|
||||
return "double";
|
||||
if(ty->is_pointer_ty())
|
||||
return "torch::Tensor";
|
||||
throw std::runtime_error("unknown type");
|
||||
}
|
||||
|
||||
inline std::string to_torch_ty(rt::arg_type ty){
|
||||
switch(ty){
|
||||
case rt::INT1_T: return "int64_t";
|
||||
case rt::INT8_T: return "int64_t";
|
||||
case rt::INT16_T: return "int64_t";
|
||||
case rt::INT32_T: return "int64_t";
|
||||
case rt::INT64_T: return "int64_t";
|
||||
case rt::HALF_T: return "double";
|
||||
case rt::FLOAT_T: return "double";
|
||||
case rt::DOUBLE_T: return "double";
|
||||
case rt::BUFFER_T: return "torch::Tensor";
|
||||
default: return "UNKNOWN";
|
||||
}
|
||||
}
|
||||
|
||||
inline std::string to_c_ty(rt::arg_type ty){
|
||||
switch(ty){
|
||||
case rt::INT1_T: return "bool";
|
||||
case rt::INT8_T: return "int8_t";
|
||||
case rt::INT16_T: return "int16_t";
|
||||
case rt::INT32_T: return "int32_t";
|
||||
case rt::INT64_T: return "int64_t";
|
||||
case rt::HALF_T: return "half";
|
||||
case rt::FLOAT_T: return "float";
|
||||
case rt::DOUBLE_T: return "double";
|
||||
case rt::BUFFER_T: return "drv::cu_buffer";
|
||||
default: return "UNKNOWN";
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
inline std::string to_c_ty(ir::type *ty) {
|
||||
if(ty->is_integer_ty(1))
|
||||
return "bool";
|
||||
if(ty->is_integer_ty(8))
|
||||
return "int8_t";
|
||||
if(ty->is_integer_ty(16))
|
||||
return "int16_t";
|
||||
if(ty->is_integer_ty(32))
|
||||
return "int32_t";
|
||||
if(ty->is_integer_ty(64))
|
||||
return "int64_t";
|
||||
if(ty->is_half_ty())
|
||||
return "half";
|
||||
if(ty->is_float_ty())
|
||||
return "float";
|
||||
if(ty->is_double_ty())
|
||||
return "double";
|
||||
if(ty->is_pointer_ty())
|
||||
return "drv::cu_buffer";
|
||||
throw std::runtime_error("unknown type");
|
||||
}
|
||||
|
||||
|
||||
|
||||
void gen_torch_signature(std::ostringstream& oss,
|
||||
const std::string& name,
|
||||
const std::vector<rt::arg_type>& args) {
|
||||
std::string ret_ty = "void";
|
||||
oss << ret_ty << " " << name << "(";
|
||||
oss << "int64_t id, ";
|
||||
oss << "int64_t dev_id, ";
|
||||
oss << "int64_t bench, ";
|
||||
oss << "int64_t bench_id, ";
|
||||
for(size_t i = 0; i < args.size(); i++) {
|
||||
if(i > 0)
|
||||
oss << ", ";
|
||||
oss << to_torch_ty(args[i]) << " " << "th_arg_" << i;
|
||||
}
|
||||
oss << ")";
|
||||
}
|
||||
|
||||
void gen_torch_init_driver(std::ostringstream &oss,
|
||||
const std::vector<rt::arg_type>&args) {
|
||||
// Find index of first buffer
|
||||
size_t i;
|
||||
for(i = 0; i < args.size(); i++)
|
||||
if(args[i] == rt::BUFFER_T)
|
||||
break;
|
||||
oss << " // Wrap CUDA handles" << std::endl;
|
||||
oss << " c10::DeviceIndex device = th_arg_" << i << ".storage().device().index();" << std::endl;
|
||||
oss << " // Get stream" << std::endl;
|
||||
oss << " CUstream custream = (CUstream)at::cuda::getCurrentCUDAStream(device).stream();" << std::endl;
|
||||
oss << " triton::driver::cu_stream stream(custream, false);" << std::endl;
|
||||
oss << " triton::driver::context* ctx = stream.context();" << std::endl;
|
||||
}
|
||||
|
||||
void gen_torch_make_handles(std::ostream &os,
|
||||
const std::vector<rt::arg_type>& args) {
|
||||
for(unsigned i = 0; i < args.size(); i++){
|
||||
rt::arg_type arg = args[i];
|
||||
const std::string th_name = "th_arg_" + std::to_string(i);
|
||||
const std::string name = "arg_" + std::to_string(i);
|
||||
if(arg != rt::BUFFER_T)
|
||||
os << " " << to_c_ty(arg) << " " << name << " = " << th_name << ";" << std::endl;
|
||||
else{
|
||||
os << " CHECK_INPUT(" << th_name << ");" << std::endl;
|
||||
os << " drv::cu_buffer " + name + "(ctx, " + th_name + ".nbytes(), "
|
||||
" (CUdeviceptr)((char*)" + th_name + ".storage().data() + " + th_name + ".storage_offset() * " + th_name + ".itemsize()), false);" << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::string get_val_struct_name(rt::arg_type ty){
|
||||
switch(ty){
|
||||
case rt::INT1_T: return "int1";
|
||||
case rt::INT8_T: return "int8";
|
||||
case rt::INT16_T: return "int16";
|
||||
case rt::INT32_T: return "int32";
|
||||
case rt::INT64_T: return "int64";
|
||||
case rt::HALF_T: return "fp16";
|
||||
case rt::FLOAT_T: return "fp32";
|
||||
case rt::DOUBLE_T: return "fp64";
|
||||
case rt::BUFFER_T: return "buf";
|
||||
default: return "";
|
||||
}
|
||||
}
|
||||
|
||||
void gen_torch_make_launch_function(std::ostream &os,
|
||||
const std::vector<rt::arg_type>& args) {
|
||||
os << " namespace rt = triton::runtime;\n ";
|
||||
os << " std::vector<rt::arg> args;\n ";
|
||||
for(unsigned i = 0; i < args.size(); i++){
|
||||
std::string name = "arg_" + std::to_string(i);
|
||||
if(args[i] == rt::BUFFER_T)
|
||||
name = "&" + name;
|
||||
if(args[i] == rt::HALF_T)
|
||||
name = "*((uint16_t*)&" + name + ")";
|
||||
os << "rt::arg_type ty" << i << " = (rt::arg_type)(" << args[i] << ");\n ";
|
||||
os << "rt::arg::value_t val" << i << ";\n ";
|
||||
os << "val" << i << "." << get_val_struct_name(args[i]) << " = " << name << ";\n ";
|
||||
os << "args.push_back(rt::arg(ty" << i << ", val" << i << "));\n ";
|
||||
}
|
||||
os << " std::function<void()> run = [&](){\n ";
|
||||
os << " (*id_fn_map.at({id, dev_id}))(args , *id_grid_map.at({id, dev_id}), &stream);\n";
|
||||
os << " };\n";
|
||||
os << " run();\n";
|
||||
os << " if(bench > 0)\n ";
|
||||
os << " i64scalar_map[bench_id] = triton::tools::bench(run, &stream);\n ";
|
||||
}
|
||||
|
||||
void gen_torch_ret(std::ostream &os, const std::vector<std::string>& outputs) {
|
||||
if(outputs.size() == 1){
|
||||
os << " return " << outputs[0] << ";" << std::endl;
|
||||
return;
|
||||
}
|
||||
os << " return {";
|
||||
for(size_t i = 0; i < outputs.size(); i++){
|
||||
if(i > 0)
|
||||
os << ", ";
|
||||
os << outputs[i];
|
||||
}
|
||||
os << "};" << std::endl;
|
||||
}
|
||||
|
||||
std::tuple<std::string,
|
||||
std::string> make_torch_src(const std::string& name, std::vector<rt::arg_type> args) {
|
||||
// generate framework code
|
||||
std::ostringstream oss;
|
||||
oss << R"(
|
||||
#include "triton/driver/buffer.h"
|
||||
#include "triton/driver/stream.h"
|
||||
#include "triton/runtime/function.h"
|
||||
#include "triton/tools/bench.hpp"
|
||||
#include "torch/script.h"
|
||||
#include "ATen/cuda/CUDAContext.h"
|
||||
|
||||
#define CHECK_CUDA(x) AT_ASSERTM(x.type().is_cuda(), #x " must be a CUDA tensor")
|
||||
#define CHECK_CONTIGUOUS(x) AT_ASSERTM(x.is_contiguous(), #x " must be contiguous")
|
||||
#define CHECK_INPUT(x) CHECK_CUDA(x);
|
||||
|
||||
namespace rt = triton::runtime;
|
||||
namespace drv = triton::driver;
|
||||
|
||||
typedef std::pair<size_t, size_t> map_key_t;
|
||||
extern std::map<map_key_t, std::shared_ptr<rt::function::grid_fn_ty>> id_grid_map;
|
||||
extern std::map<map_key_t, std::shared_ptr<rt::function>> id_fn_map;
|
||||
extern std::map<size_t, int64_t> i64scalar_map;
|
||||
|
||||
)";
|
||||
|
||||
gen_torch_signature(oss, name, args);
|
||||
oss << " {" << std::endl;
|
||||
gen_torch_init_driver(oss, args);
|
||||
gen_torch_make_handles(oss, args);
|
||||
gen_torch_make_launch_function(oss, args);
|
||||
//gen_torch_ret(oss);
|
||||
oss << "}" << std::endl;
|
||||
|
||||
oss << std::endl;
|
||||
oss << std::endl;
|
||||
oss << "static auto registry = torch::RegisterOperators(\"triton::" << name << "\", &" << name << ");" << std::endl;
|
||||
|
||||
return std::tuple<std::string, std::string>{oss.str(), name};
|
||||
}
|
||||
|
||||
/* Function signature */
|
||||
std::vector<rt::arg_type> get_fn_signature(const std::string& src,
|
||||
const runtime::function::options_space_t& opt) {
|
||||
@@ -646,13 +116,6 @@ typedef triton::runtime::function::options_space_t options_space_t;
|
||||
PYBIND11_MODULE(libtriton, m) {
|
||||
m.doc() = "Python bindings to the C++ Triton API";
|
||||
|
||||
// framework binding source code generation
|
||||
m.def("make_tensorflow_src", &make_tensorflow_src,
|
||||
"Creates C++ source code for a custom Tensorflow op "
|
||||
"corresponding to the specified Triton kernel");
|
||||
m.def("make_torch_src", &make_torch_src,
|
||||
"Creates C++ source code for a custom PyTorch op ");
|
||||
|
||||
// bindings for triton classes
|
||||
pybind11::enum_<rt::arg_type>(m, "arg_type")
|
||||
.value("int1", rt::INT1_T)
|
||||
|
27
python/src/launch.cc
Normal file
27
python/src/launch.cc
Normal file
@@ -0,0 +1,27 @@
|
||||
#include "triton/driver/buffer.h"
|
||||
#include "triton/driver/stream.h"
|
||||
#include "triton/runtime/function.h"
|
||||
#include "triton/tools/bench.hpp"
|
||||
#include "torch/script.h"
|
||||
#include "ATen/cuda/CUDAContext.h"
|
||||
|
||||
#define CHECK_CUDA(x) AT_ASSERTM(x.type().is_cuda(), #x " must be a CUDA tensor")
|
||||
#define CHECK_CONTIGUOUS(x) AT_ASSERTM(x.is_contiguous(), #x " must be contiguous")
|
||||
#define CHECK_INPUT(x) CHECK_CUDA(x);
|
||||
|
||||
namespace rt = triton::runtime;
|
||||
namespace drv = triton::driver;
|
||||
|
||||
typedef std::pair<size_t, size_t> map_key_t;
|
||||
extern std::map<map_key_t, std::shared_ptr<rt::function::grid_fn_ty>> id_grid_map;
|
||||
extern std::map<map_key_t, std::shared_ptr<rt::function>> id_fn_map;
|
||||
|
||||
void launch_kernel(int64_t op_id, int64_t dev_id, const std::string& args){
|
||||
CUstream custream = (CUstream)at::cuda::getCurrentCUDAStream(dev_id).stream();
|
||||
triton::driver::cu_stream stream(custream, false);
|
||||
triton::driver::context* ctx = stream.context();
|
||||
(*id_fn_map.at({op_id, dev_id}))((void**)args.c_str(), args.size(), *id_grid_map.at({op_id, dev_id}), &stream);
|
||||
}
|
||||
|
||||
|
||||
static auto registry = torch::RegisterOperators("triton::launch_kernel", &launch_kernel);
|
@@ -1,7 +1,6 @@
|
||||
from .kernel import *
|
||||
from .utils import *
|
||||
import triton.ops
|
||||
import triton.nn
|
||||
#import triton.ops
|
||||
#import triton.nn
|
||||
|
||||
|
||||
# clean-up libtriton resources
|
||||
|
@@ -1,28 +0,0 @@
|
||||
import sys
|
||||
import os
|
||||
import triton._C.libtriton as libtriton
|
||||
|
||||
torch = None
|
||||
tensorflow = None
|
||||
|
||||
def _import_torch():
|
||||
global torch
|
||||
if torch is None:
|
||||
import torch
|
||||
|
||||
def _import_tensorflow():
|
||||
global tensorflow
|
||||
if tensorflow is None:
|
||||
import tensorflow
|
||||
|
||||
def has_tensorflow():
|
||||
result = 'tensorflow' in sys.modules
|
||||
if result:
|
||||
_import_tensorflow()
|
||||
return result
|
||||
|
||||
def has_torch():
|
||||
result = 'torch' in sys.modules
|
||||
if result:
|
||||
_import_torch()
|
||||
return result
|
@@ -1,181 +1,71 @@
|
||||
# import for cache
|
||||
import os
|
||||
import tempfile
|
||||
import shutil
|
||||
import hashlib
|
||||
import sysconfig
|
||||
import sys
|
||||
import weakref
|
||||
import contextlib
|
||||
import io
|
||||
import torch.utils.cpp_extension
|
||||
# import for just-in-time compilation
|
||||
import distutils
|
||||
import setuptools.command.build_ext
|
||||
import setuptools
|
||||
# triton
|
||||
import triton.frameworks as fw
|
||||
import triton.utils
|
||||
import triton._C.libtriton as libtriton
|
||||
import os
|
||||
import time
|
||||
import platform
|
||||
from struct import pack
|
||||
import torch
|
||||
|
||||
@contextlib.contextmanager
|
||||
def quiet():
|
||||
old_stdout, old_stderr = sys.stdout, sys.stderr
|
||||
sys.stdout, sys.stderr = io.StringIO(), io.StringIO()
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
sys.stdout, sys.stderr = old_stdout, old_stderr
|
||||
codes = {
|
||||
libtriton.arg_type.int1: 'B',
|
||||
libtriton.arg_type.int8: 'B',
|
||||
libtriton.arg_type.int32: 'I',
|
||||
libtriton.arg_type.int64: 'Q',
|
||||
libtriton.arg_type.half: 'H',
|
||||
libtriton.arg_type.float: 'f',
|
||||
libtriton.arg_type.double: 'd',
|
||||
libtriton.arg_type.buffer: 'P'
|
||||
}
|
||||
|
||||
def _build(src, path, name):
|
||||
ccdir = os.path.join(libtriton.__file__, os.path.pardir)
|
||||
ccdir = os.path.realpath(ccdir)
|
||||
# include / libraries
|
||||
include_dirs = [os.path.join(ccdir, 'include')]
|
||||
library_dirs = [ccdir]
|
||||
libraries = ['triton']
|
||||
# create extension module
|
||||
abi = fw.torch._C._GLIBCXX_USE_CXX11_ABI
|
||||
extra_compile_args = ['-fPIC', '-Wno-deprecated-declarations', f'-D_GLIBCXX_USE_CXX11_ABI={str(int(abi))}']
|
||||
extra_compile_args += ['-DTORCH_EXTENSION_NAME={}'.format(name)]
|
||||
extra_compile_args += ['-DTORCH_API_INCLUDE_EXTENSION_H']
|
||||
|
||||
ext = torch.utils.cpp_extension.CUDAExtension(
|
||||
name = name,
|
||||
language = 'c++',
|
||||
sources = [src],
|
||||
include_dirs = include_dirs,
|
||||
library_dirs = library_dirs,
|
||||
libraries = libraries,
|
||||
extra_compile_args = extra_compile_args,
|
||||
depends = [os.path.realpath(libtriton.__file__)]
|
||||
)
|
||||
# build extension module
|
||||
args = ['build_ext']
|
||||
tmp = tempfile.mkdtemp()
|
||||
args.append('--build-temp=' + tmp)
|
||||
args.append('--build-lib=' + path)
|
||||
args.append('-q')
|
||||
args = dict(
|
||||
name = name,
|
||||
ext_modules = [ext],
|
||||
script_args = args,
|
||||
)
|
||||
with quiet():
|
||||
setuptools.setup(**args)
|
||||
shutil.rmtree(tmp)
|
||||
|
||||
def _cvt_to_def_str(obj):
|
||||
# bool
|
||||
if isinstance(obj, bool):
|
||||
return str(int(obj))
|
||||
# torch type
|
||||
if fw.has_torch():
|
||||
if isinstance(obj, fw.torch.dtype):
|
||||
return {fw.torch.int8: 'char',
|
||||
fw.torch.int16: 'short',
|
||||
fw.torch.int32: 'int',
|
||||
fw.torch.int64: 'long',
|
||||
fw.torch.float16: 'half',
|
||||
fw.torch.float32: 'float',
|
||||
fw.torch.float64: 'double'}[obj]
|
||||
else:
|
||||
assert False
|
||||
# default
|
||||
return str(obj)
|
||||
sizes = {
|
||||
libtriton.arg_type.int1: 1,
|
||||
libtriton.arg_type.int8: 1,
|
||||
libtriton.arg_type.int32: 4,
|
||||
libtriton.arg_type.int64: 8,
|
||||
libtriton.arg_type.half: 2,
|
||||
libtriton.arg_type.float: 4,
|
||||
libtriton.arg_type.double: 8,
|
||||
libtriton.arg_type.buffer: 8
|
||||
}
|
||||
|
||||
|
||||
def _encode(arg_types):
|
||||
codes = {
|
||||
libtriton.arg_type.int1: 'i1',
|
||||
libtriton.arg_type.int8: 'i8',
|
||||
libtriton.arg_type.int32: 'i32',
|
||||
libtriton.arg_type.int64: 'i64',
|
||||
libtriton.arg_type.half: 'f16',
|
||||
libtriton.arg_type.float: 'f32',
|
||||
libtriton.arg_type.double: 'f64',
|
||||
libtriton.arg_type.buffer: 'buf'
|
||||
def th_to_triton(obj):
|
||||
tys = {
|
||||
torch.int8: 'char',
|
||||
torch.int16: 'short',
|
||||
torch.int32: 'int',
|
||||
torch.int64: 'long',
|
||||
torch.float16: 'half',
|
||||
torch.float32: 'float',
|
||||
torch.float64: 'double'
|
||||
}
|
||||
ret = '_'.join(map(codes.get, arg_types))
|
||||
return ret
|
||||
if isinstance(obj, torch.dtype):
|
||||
return [tys[obj]]
|
||||
if isinstance(obj, list):
|
||||
return [th_to_triton(x)[0] for x in obj]
|
||||
return [str(obj)]
|
||||
|
||||
def _make_framework_op(arg_types):
|
||||
name = _encode(arg_types)
|
||||
# path of .cpp and .so file
|
||||
home = os.path.expanduser('~')
|
||||
root = os.path.join(home, '.triton', 'torch', name)
|
||||
try:
|
||||
os.makedirs(root)
|
||||
except FileExistsError:
|
||||
pass
|
||||
suffix = sysconfig.get_config_var('EXT_SUFFIX')
|
||||
so = os.path.join(root, f'op{suffix}')
|
||||
cpp = os.path.join(root, f'op.cpp')
|
||||
# handle cached .so file
|
||||
if os.path.exists(so) and os.stat(so).st_size > 0:
|
||||
tt_mtime = os.stat(os.path.realpath(libtriton.__file__)).st_mtime
|
||||
so_mtime = os.stat(so).st_mtime
|
||||
# can use cached if libtriton is older than the .so
|
||||
if tt_mtime < so_mtime:
|
||||
fw.torch.ops.load_library(so)
|
||||
return getattr(fw.torch.ops.triton, name)
|
||||
# create torch source code
|
||||
print('[TRITON] Compiling op...')
|
||||
baton = torch.utils.file_baton.FileBaton(os.path.join(root, 'lock'))
|
||||
if baton.try_acquire():
|
||||
try:
|
||||
src, _ = libtriton.make_torch_src(name, arg_types)
|
||||
with open(cpp, 'w+') as handle:
|
||||
handle.writelines(src)
|
||||
ccdir = os.path.join(libtriton.__file__, os.path.pardir)
|
||||
ccdir = os.path.realpath(ccdir)
|
||||
_build(cpp, root, 'op')
|
||||
finally:
|
||||
baton.release()
|
||||
else:
|
||||
baton.wait()
|
||||
print('[TRITON] Done compiling...')
|
||||
fw.torch.ops.load_library(so)
|
||||
return getattr(fw.torch.ops.triton, name)
|
||||
|
||||
|
||||
|
||||
|
||||
def cdiv(a, b):
|
||||
return (a + b - 1) // b
|
||||
|
||||
class kernel:
|
||||
|
||||
def __init__(self, src, defines = dict(), num_warps = [2, 4, 8]):
|
||||
self.src = src
|
||||
# create constants
|
||||
self.cst = dict()
|
||||
# create triton op
|
||||
macros = []
|
||||
for k, v in defines.items():
|
||||
cvt = lambda x: _cvt_to_def_str(x)
|
||||
if(isinstance(v, list)):
|
||||
values = list(map(cvt, v))
|
||||
else:
|
||||
values = [cvt(v)]
|
||||
macros.append((k, values))
|
||||
opt = libtriton.options_space()
|
||||
opt.defines = macros
|
||||
opt.num_warps = num_warps
|
||||
self.opt = libtriton.options_space()
|
||||
self.opt.defines = [(k, th_to_triton(v)) for k, v in defines.items()]
|
||||
self.opt.num_warps = num_warps
|
||||
self.op_id = libtriton.make_op_id()
|
||||
self.opt = opt
|
||||
self.registered = set()
|
||||
# create pytorch hook
|
||||
arg_types = libtriton.get_fn_signature(self.src, opt)
|
||||
self.fw_op = _make_framework_op(arg_types)
|
||||
arg_types = libtriton.get_fn_signature(self.src, self.opt)
|
||||
size = sum([sizes[x] for x in arg_types])
|
||||
self.tys = ''.join([codes[x] for x in arg_types])
|
||||
|
||||
def set_constant(self, device, name, value):
|
||||
libtriton.register_cst((self.op_id, device), name, value)
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
for x in args:
|
||||
if isinstance(x, fw.torch.Tensor):
|
||||
if isinstance(x, torch.Tensor):
|
||||
device = x.device.index
|
||||
break
|
||||
# lazily register function for device
|
||||
@@ -191,6 +81,6 @@ class kernel:
|
||||
grid = kwargs['grid']
|
||||
libtriton.register_grid((self.op_id, device), grid)
|
||||
# launch
|
||||
self.fw_op(self.op_id, device, bench, bench_id, *args)
|
||||
if bench > 0:
|
||||
return libtriton.retrieve_scalar(bench_id)
|
||||
params = pack(self.tys, *[x.data_ptr() if isinstance(x, torch.Tensor) else x for x in args])
|
||||
torch.cuda.synchronize()
|
||||
torch.ops.triton.launch_kernel(self.op_id, device, params)
|
@@ -1,75 +0,0 @@
|
||||
import triton.frameworks as fw
|
||||
import triton._C.libtriton as libtriton
|
||||
import numpy as np
|
||||
import weakref
|
||||
|
||||
def cdiv(a, b):
|
||||
return (a + b - 1) // b
|
||||
|
||||
class tf_empty_proxy:
|
||||
|
||||
def __init__(self, shape, dtype):
|
||||
self.shape = shape
|
||||
self.dtype = dtype
|
||||
self.tensor = None
|
||||
|
||||
def to_tensor(self):
|
||||
assert self.tensor is not None
|
||||
return self.tensor
|
||||
|
||||
def empty(shape, dtype):
|
||||
if fw.has_tensorflow():
|
||||
shape = [fw.tensorflow.constant(x) for x in shape]
|
||||
shape = fw.tensorflow.stack(shape)
|
||||
return tf_empty_proxy(shape, dtype)
|
||||
#return fw.tf_extra_ops.alloc_empty(args, T = dtype)
|
||||
elif fw.has_torch():
|
||||
return fw.torch.empty(shape, dtype=dtype, device='cuda:0')
|
||||
|
||||
def shape(A) :
|
||||
if fw.has_tensorflow():
|
||||
return A.shape.as_list()
|
||||
elif fw.has_torch():
|
||||
return A.shape
|
||||
else:
|
||||
assert False
|
||||
|
||||
|
||||
class id_dict:
|
||||
|
||||
# Lazy entry for e.g., tensorflow, when value of benchmark is
|
||||
# not known at graph compile time
|
||||
class lazy_entry:
|
||||
def __init__(self, id):
|
||||
self.id = id
|
||||
|
||||
def get(self):
|
||||
return libtriton.retrieve_scalar(self.id)
|
||||
|
||||
def __init__(self):
|
||||
self.data = dict()
|
||||
|
||||
def __delitem__(self, key):
|
||||
del self.data[key]
|
||||
|
||||
@staticmethod
|
||||
def _get_key(key):
|
||||
if fw.has_tensorflow():
|
||||
if isinstance(key, fw.tensorflow.Tensor):
|
||||
key = id(key.op)
|
||||
if fw.has_torch():
|
||||
if isinstance(key, fw.torch.Tensor):
|
||||
key = id(key)
|
||||
return key
|
||||
|
||||
def __getitem__(self, key):
|
||||
ret = self.data[id_dict._get_key(key)]
|
||||
if isinstance(ret, id_dict.lazy_entry):
|
||||
return ret.get()
|
||||
return ret
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data)
|
||||
|
||||
def __setitem__(self, key, value):
|
||||
self.data[id_dict._get_key(key)] = value
|
@@ -17,11 +17,11 @@ int main() {
|
||||
// config_t{ord, x[0], x[1], 384, 384, 384},
|
||||
// config_t{ord, x[0], x[1], 512, 512, 512},
|
||||
// config_t{ord, x[0], x[1], 768, 768, 768},
|
||||
// config_t{ord, x[0], x[1], 1024, 1024, 1024},
|
||||
config_t{ord, x[0], x[1], 1024, 1024, 1024},
|
||||
// config_t{ord, x[0], x[1], 1280, 1280, 1280},
|
||||
// config_t{ord, x[0], x[1], 1536, 1536, 1536},
|
||||
// config_t{ord, x[0], x[1], 2048, 2048, 2048},
|
||||
config_t{ord, x[0], x[1], 8192, 8192, 8192},
|
||||
// config_t{ord, x[0], x[1], 8192, 8192, 8192},
|
||||
|
||||
// config_t{ord, x[0], x[1], 256, 16, 256},
|
||||
// config_t{ord, x[0], x[1], 512, 16, 512},
|
||||
@@ -65,7 +65,7 @@ int main() {
|
||||
for(const auto& c: configs){
|
||||
std::tie(ord, AT, BT, M, N, K) = c;
|
||||
std::cout << "// " << c ;
|
||||
for(auto perf: bench_dot(stream, HALF, AT, BT, M, N, K, ord, ord))
|
||||
for(auto perf: bench_dot(stream, FLOAT, AT, BT, M, N, K, ord, ord))
|
||||
std::cout << ", " << perf << std::flush;
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
@@ -2,6 +2,7 @@
|
||||
#include <cstring>
|
||||
#include <sstream>
|
||||
#include <cstdio>
|
||||
#include <tuple>
|
||||
#include "triton/driver/backend.h"
|
||||
#include "triton/driver/stream.h"
|
||||
#include "triton/tools/bench.hpp"
|
||||
@@ -12,6 +13,24 @@
|
||||
#include "util.h"
|
||||
|
||||
|
||||
//struct dot_arg_t{
|
||||
// CUdeviceptr a;
|
||||
// CUdeviceptr b;
|
||||
// CUdeviceptr c;
|
||||
// float alpha;
|
||||
// int M;
|
||||
// int N;
|
||||
// int K;
|
||||
// int lda;
|
||||
// int ldb;
|
||||
// int ldc;
|
||||
// CUdeviceptr locks;
|
||||
//};
|
||||
|
||||
//typedef std::tuple<CUdeviceptr, CUdeviceptr, CUdeviceptr,
|
||||
// float, int, int, int, int, int, int,
|
||||
// CUdeviceptr> dot_arg_t;
|
||||
|
||||
template<class T, bool AT, bool BT>
|
||||
static void cc_dot(std::vector<T> &c, const std::vector<T> &a, const std::vector<T> &b,
|
||||
size_t M, size_t N, size_t K){
|
||||
@@ -108,6 +127,7 @@ void triton_dot(drv::stream* stream, bool AT, bool BT,
|
||||
opt.defines.push_back({"TM", {std::to_string(TM)}});
|
||||
opt.defines.push_back({"TN", {std::to_string(TN)}});
|
||||
opt.defines.push_back({"TK", {std::to_string(TK)}});
|
||||
opt.defines.push_back({"TZ", {"1"}});
|
||||
opt.num_warps = {nwarp};
|
||||
}
|
||||
if(mode == BENCH) {
|
||||
@@ -119,9 +139,25 @@ void triton_dot(drv::stream* stream, bool AT, bool BT,
|
||||
}
|
||||
|
||||
// kernels
|
||||
|
||||
rt::function function(src::dot, opt);
|
||||
std::vector<rt::arg> args = {&*da, &*db, &*dc, (float)1, M, N, K, lda, ldb, ldc, &*dlocks};
|
||||
float alpha = 1;
|
||||
char args[60];
|
||||
memcpy(args + 0, &*da->cu(), 8);
|
||||
memcpy(args + 8, &*db->cu(), 8);
|
||||
memcpy(args + 16, &*dc->cu(), 8);
|
||||
memcpy(args + 24, &alpha, 4);
|
||||
memcpy(args + 28, &M, 4);
|
||||
memcpy(args + 32, &N, 4);
|
||||
memcpy(args + 36, &K, 4);
|
||||
memcpy(args + 40, &lda, 4);
|
||||
memcpy(args + 44, &ldb, 4);
|
||||
memcpy(args + 48, &ldc, 4);
|
||||
memcpy(args + 52, &*dlocks->cu(), 8);
|
||||
|
||||
|
||||
// dot_arg_t args = {*da->cu(), *db->cu(), *dc->cu(),
|
||||
// 1, M, N, K, lda, ldb, ldc, *dlocks->cu()};
|
||||
// std::cout << sizeof(dot_arg_t) << std::endl;
|
||||
auto grid = [M, N](const rt::function::options_t& x) {
|
||||
return rt::grid_t{ceil(M, x.D<int>("TM")),
|
||||
ceil(N, x.D<int>("TN")),
|
||||
@@ -131,7 +167,7 @@ void triton_dot(drv::stream* stream, bool AT, bool BT,
|
||||
// metrics
|
||||
if(mode == BENCH){
|
||||
auto tflops = [&](double nanosec) { return 2.*M*N*K / nanosec * 1e-3; };
|
||||
double triton_ns = triton::tools::bench([&]() { function(args, grid, stream);}, stream);
|
||||
double triton_ns = triton::tools::bench([&]() { function((void**)&args, grid, stream);}, stream);
|
||||
bench.push_back(tflops(triton_ns));
|
||||
|
||||
// cublas
|
||||
@@ -162,7 +198,7 @@ void triton_dot(drv::stream* stream, bool AT, bool BT,
|
||||
stream->write(&*da, true, 0, ha);
|
||||
stream->write(&*db, true, 0, hb);
|
||||
// run kernel
|
||||
function(args, grid, stream);
|
||||
function((void**)&args, grid, stream);
|
||||
// write back
|
||||
stream->synchronize();
|
||||
// compare with CPU
|
||||
|
@@ -6,7 +6,9 @@ __global__ void dot(TYPE * A __noalias __readonly __aligned(16),
|
||||
TYPE * B __noalias __readonly __aligned(16),
|
||||
TYPE * C __noalias __aligned(16),
|
||||
float alpha,
|
||||
int M, int N, int K __multipleof(16),
|
||||
int M __retune,
|
||||
int N __retune,
|
||||
int K __retune __multipleof(16),
|
||||
int lda __multipleof(8),
|
||||
int ldb __multipleof(8),
|
||||
int ldc __multipleof(8),
|
||||
|
@@ -16,7 +16,7 @@ int main() {
|
||||
for(int nwarps: std::vector<int>{4})
|
||||
for(bool AT: std::array<bool, 2>{false, true})
|
||||
for(bool BT: std::array<bool, 2>{false, true}){
|
||||
configs.push_back(config_t{HALF, AT, BT, TM, TN, TK, TM, TN, TK, nwarps});
|
||||
configs.push_back(config_t{FLOAT, AT, BT, TM, TN, TK, TM, TN, TK, nwarps});
|
||||
}
|
||||
// test
|
||||
dtype_t dtype;
|
||||
|
Reference in New Issue
Block a user