[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-09-14 00:53:02 +00:00
parent 9fd9c56321
commit affd3325b2
163 changed files with 288 additions and 288 deletions

View File

@@ -326,14 +326,14 @@ for different problem sizes.</p>
size Triton Torch
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 31.999999 38.400001
2 16384.0 38.400001 38.400001
3 32768.0 76.800002 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 341.333321
6 262144.0 384.000001 384.000001
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 722.823517
9 2097152.0 722.823517 702.171410
10 4194304.0 780.190482 780.190482
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
@@ -342,7 +342,7 @@ for different problem sizes.</p>
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 47.234 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 46.359 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -371,17 +371,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 546.133347 546.133347 186.181817
0 256.0 512.000001 546.133347 186.181817
1 384.0 614.400016 585.142862 153.600004
2 512.0 655.360017 606.814814 154.566038
2 512.0 655.360017 585.142849 154.566038
3 640.0 706.206879 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 812.359066 406.179533 198.631953
94 12288.0 812.429770 416.101597 198.895304
95 12416.0 812.498981 412.149375 198.606350
96 12544.0 810.925276 412.971190 198.815254
97 12672.0 811.007961 412.097543 198.873965
93 12160.0 812.359066 406.179533 198.834951
94 12288.0 812.429770 415.222812 199.197579
95 12416.0 812.498981 412.149375 198.655991
96 12544.0 810.925276 412.546756 199.012395
97 12672.0 811.007961 412.097543 199.069228
[98 rows x 4 columns]
</pre></div>
@@ -394,7 +394,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 31.174 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 30.997 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -567,42 +567,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 3.276800 2.978909
1 384.0 7.372800 ... 7.899428 8.507077
0 256.0 2.978909 ... 2.978909 3.276800
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 15.420235 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 35.389441 34.028308
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 49.932191 ... 53.773130 52.428801
7 1152.0 45.242181 ... 48.161033 48.161033
7 1152.0 45.242181 ... 48.161033 47.396572
8 1280.0 51.200001 ... 57.690139 57.690139
9 1408.0 64.138541 ... 69.009825 67.305878
10 1536.0 80.430545 ... 80.430545 78.643199
10 1536.0 80.430545 ... 81.355034 79.526831
11 1664.0 62.929456 ... 63.372618 62.492442
12 1792.0 72.512412 ... 73.460287 59.467852
13 1920.0 68.776119 ... 71.626943 71.257735
14 2048.0 73.908442 ... 78.398206 77.314362
15 2176.0 83.500614 ... 87.494120 85.998493
16 2304.0 68.446623 ... 78.064941 77.307030
17 2432.0 71.305746 ... 85.915795 75.118889
18 2560.0 77.833728 ... 82.331658 81.108913
19 2688.0 83.369354 ... 90.532356 89.464755
20 2816.0 79.733474 ... 84.523664 79.879498
21 2944.0 81.967162 ... 82.921853 81.967162
22 3072.0 80.202695 ... 89.735509 87.719755
23 3200.0 83.116885 ... 88.888888 95.952022
24 3328.0 83.516586 ... 84.151136 83.034941
25 3456.0 82.688790 ... 89.281913 88.400840
26 3584.0 87.296493 ... 97.947050 97.734120
27 3712.0 82.491612 ... 89.114488 87.937800
28 3840.0 81.798814 ... 85.333335 89.985351
29 3968.0 88.873953 ... 91.403695 84.094627
30 4096.0 92.182504 ... 85.163532 89.928129
13 1920.0 69.120002 ... 71.257735 71.257735
14 2048.0 73.584279 ... 78.033565 77.314362
15 2176.0 83.500614 ... 87.115360 85.998493
16 2304.0 68.446623 ... 78.064941 77.057651
17 2432.0 71.305746 ... 86.711310 75.320281
18 2560.0 78.019048 ... 82.539044 81.310171
19 2688.0 83.737433 ... 90.532356 89.254248
20 2816.0 79.587973 ... 83.392363 83.392363
21 2944.0 81.298583 ... 83.060049 82.373605
22 3072.0 81.825298 ... 89.310890 87.112467
23 3200.0 81.424937 ... 96.385543 95.380032
24 3328.0 83.034941 ... 86.424125 85.096096
25 3456.0 79.430113 ... 90.180725 89.281913
26 3584.0 87.381330 ... 99.134944 90.370072
27 3712.0 81.482335 ... 89.114488 84.159518
28 3840.0 84.874902 ... 92.934455 85.663823
29 3968.0 92.652949 ... 89.198780 91.954739
30 4096.0 86.256445 ... 89.003801 91.304576
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 7 minutes 8.682 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 7 minutes 19.249 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -374,7 +374,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.282 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.287 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -198,34 +198,34 @@ to download the full example code</p>
N Triton Torch Apex
0 1024.0 585.142849 277.694907 468.114273
1 1536.0 630.153868 323.368435 511.999982
2 2048.0 668.734716 334.367358 520.126988
2 2048.0 682.666643 337.814445 520.126988
3 2560.0 694.237267 362.477870 512.000013
4 3072.0 712.347810 378.092307 501.551037
5 3584.0 725.873439 384.859062 451.527536
6 4096.0 728.177767 381.023256 455.111095
5 3584.0 725.873439 384.859062 455.111115
6 4096.0 728.177767 381.023256 451.972420
7 4608.0 670.254540 396.387087 428.651163
8 5120.0 688.403381 397.669909 422.268057
9 5632.0 704.000002 395.228063 417.185184
10 6144.0 697.191505 402.885254 411.313806
11 6656.0 705.271522 400.360920 400.360920
12 7168.0 686.754468 396.844306 387.459443
13 7680.0 682.666656 392.587863 387.634072
14 8192.0 633.198054 393.609605 371.308771
15 8704.0 627.315309 389.005597 380.502740
16 9216.0 606.814809 407.337026 383.999986
17 9728.0 587.350922 409.599987 383.369452
18 10240.0 564.965524 408.578556 382.803739
19 10752.0 547.872604 411.559798 381.445676
20 11264.0 533.207081 406.826188 373.134567
21 11776.0 520.486200 409.599991 377.587162
22 12288.0 514.680630 413.911572 383.251457
23 12800.0 504.433489 410.420828 376.470582
24 13312.0 494.180982 405.699062 376.976995
25 13824.0 481.882350 411.888257 379.389355
26 14336.0 471.967074 406.695045 374.185964
27 14848.0 461.297068 408.192434 375.304904
28 15360.0 454.269882 406.214870 378.092307
29 15872.0 447.098578 406.974373 376.225175
8 5120.0 688.403381 397.669909 420.102563
9 5632.0 704.000002 395.228063 413.357796
10 6144.0 702.171410 402.885254 409.600010
11 6656.0 700.631610 400.360920 400.360920
12 7168.0 686.754468 392.767108 381.023265
13 7680.0 678.895043 393.846167 386.415087
14 8192.0 633.198054 394.795186 376.643677
15 8704.0 624.502255 389.005597 379.465939
16 9216.0 606.814809 406.214877 382.010363
17 9728.0 587.350922 408.524944 382.427505
18 10240.0 564.965524 409.600010 382.803739
19 10752.0 546.133312 411.559798 380.601764
20 11264.0 533.207081 404.089694 371.595879
21 11776.0 520.486200 409.599991 376.831982
22 12288.0 514.680630 414.784810 383.251457
23 12800.0 504.433489 409.599981 377.163903
24 13312.0 494.180982 406.473303 376.976995
25 13824.0 482.934503 412.656711 379.389355
26 14336.0 471.967074 403.121247 370.558967
27 14848.0 460.403127 407.492270 373.534584
28 15360.0 454.269882 406.214870 377.511515
29 15872.0 447.887117 407.627589 376.225175
</pre></div>
</div>
<div class="line-block">
@@ -543,7 +543,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 30.656 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 30.300 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -548,7 +548,7 @@ to download the full example code</p>
<span class="c1"># bench_flash_attention.run(save_path=&#39;.&#39;, print_data=True)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.076 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.073 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-06-fused-attention-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/54a35f6ec55f9746935b9566fb6bb1df/06-fused-attention.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">06-fused-attention.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>17:58.361</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>18:07.524</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,23 +183,23 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>07:08.682</p></td>
<td><p>07:19.249</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>05:30.656</p></td>
<td><p>05:30.300</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:31.174</p></td>
<td><p>03:30.997</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:47.234</p></td>
<td><p>01:46.359</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.282</p></td>
<td><p>00:00.287</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="07-libdevice-function.html#sphx-glr-getting-started-tutorials-07-libdevice-function-py"><span class="std std-ref">Libdevice function</span></a> (<code class="docutils literal notranslate"><span class="pre">07-libdevice-function.py</span></code>)</p></td>
@@ -207,7 +207,7 @@
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="06-fused-attention.html#sphx-glr-getting-started-tutorials-06-fused-attention-py"><span class="std std-ref">Fused Attention</span></a> (<code class="docutils literal notranslate"><span class="pre">06-fused-attention.py</span></code>)</p></td>
<td><p>00:00.076</p></td>
<td><p>00:00.073</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>