[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-09-14 00:53:02 +00:00
parent 9fd9c56321
commit affd3325b2
163 changed files with 288 additions and 288 deletions

View File

@@ -334,12 +334,12 @@ for different problem sizes.</p>
10 4194304.0 780.190482 780.190482
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
13 33554432.0 842.004273 842.906750
13 33554432.0 842.004273 843.811163
14 67108864.0 847.448255 848.362445
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 46.556 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 44.156 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,17 +374,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 190.511628
1 384.0 585.142862 585.142862 153.600004
0 256.0 512.000001 546.133347 186.181817
1 384.0 614.400016 585.142862 151.703707
2 512.0 655.360017 606.814814 154.566038
3 640.0 682.666684 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 812.359066 406.179533 198.936606
94 12288.0 814.111783 415.222812 199.298541
95 12416.0 812.498981 411.722274 198.854847
96 12544.0 812.566838 413.396498 199.111113
97 12672.0 812.633240 412.097543 199.264875
93 12160.0 814.058574 406.179533 198.733401
94 12288.0 814.111783 416.101597 198.995960
95 12416.0 812.498981 412.149375 198.705656
96 12544.0 812.566838 412.971190 198.913776
97 12672.0 812.633240 412.097543 199.069228
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 23.713 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 20.891 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -568,42 +568,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 3.276800 2.978909
0 256.0 2.730667 ... 2.978909 2.978909
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 16.384000
2 512.0 14.563555 ... 16.384000 15.420235
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 51.150050 ... 53.773130 52.428801
7 1152.0 45.242181 ... 46.656000 46.656000
5 896.0 39.025776 ... 39.025776 39.025776
6 1024.0 49.932191 ... 53.773130 52.428801
7 1152.0 45.242181 ... 47.396572 46.656000
8 1280.0 51.200001 ... 56.888887 56.888887
9 1408.0 64.138541 ... 67.305878 67.305878
10 1536.0 80.430545 ... 79.526831 79.526831
11 1664.0 63.372618 ... 62.492442 62.061463
12 1792.0 72.983276 ... 72.512412 72.047592
13 1920.0 69.120002 ... 70.530615 70.530615
14 2048.0 73.908442 ... 76.959706 76.959706
15 2176.0 83.500614 ... 85.632545 85.632545
16 2304.0 68.446623 ... 76.563695 76.563695
17 2432.0 71.305746 ... 74.918570 84.877538
18 2560.0 77.833728 ... 81.108913 81.108913
19 2688.0 83.552988 ... 89.254248 89.464755
20 2816.0 79.587973 ... 82.916747 82.916747
21 2944.0 81.832567 ... 82.509987 82.509987
22 3072.0 82.062468 ... 87.651868 88.197981
23 3200.0 81.424937 ... 93.704243 92.352095
24 3328.0 84.003845 ... 84.895397 84.298943
25 3456.0 81.230800 ... 90.790053 87.489490
26 3584.0 85.633710 ... 96.166193 96.683219
27 3712.0 82.423549 ... 87.094458 87.706180
28 3840.0 83.402717 ... 91.134731 87.011801
29 3968.0 91.301109 ... 86.144680 89.394823
30 4096.0 86.592080 ... 93.206754 86.313653
12 1792.0 72.983276 ... 71.588687 71.588687
13 1920.0 68.776119 ... 70.530615 70.530615
14 2048.0 73.908442 ... 77.314362 76.959706
15 2176.0 83.500614 ... 85.998493 85.269692
16 2304.0 68.251065 ... 76.809875 76.563695
17 2432.0 71.305746 ... 74.719317 84.877538
18 2560.0 78.019048 ... 81.310171 81.108913
19 2688.0 83.552988 ... 89.995386 89.464755
20 2816.0 79.587973 ... 82.916747 82.602666
21 2944.0 82.102191 ... 82.646820 83.060049
22 3072.0 81.707223 ... 87.516392 88.060814
23 3200.0 80.402009 ... 87.551302 87.189747
24 3328.0 80.798314 ... 83.905938 84.596116
25 3456.0 82.688790 ... 91.252485 90.994998
26 3584.0 86.540320 ... 91.563533 95.350361
27 3712.0 82.491612 ... 86.867254 86.791782
28 3840.0 82.592983 ... 92.390975 86.400002
29 3968.0 93.254827 ... 85.093402 91.130650
30 4096.0 86.202781 ... 87.982773 89.210850
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 23.466 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 26.818 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -194,36 +194,36 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 311.088617 99.497980 315.076934
1 1536.0 354.461542 134.050910 338.201833
2 2048.0 423.724127 159.067963 321.254900
3 2560.0 465.454542 181.238943 326.808501
4 3072.0 515.580429 191.501303 315.076914
5 3584.0 551.384634 207.267476 307.199992
6 4096.0 568.231237 218.939860 299.707322
7 4608.0 500.416301 233.316456 290.267724
8 5120.0 529.655159 240.469672 285.104413
9 5632.0 542.843364 244.426754 290.683877
10 6144.0 546.133354 250.349744 286.322318
11 6656.0 532.479975 255.590406 286.793541
12 7168.0 513.528374 256.764187 281.558103
13 7680.0 486.332448 264.068761 283.133636
14 8192.0 464.794337 262.143998 282.077471
15 8704.0 416.958106 267.472468 285.767450
16 9216.0 430.319054 272.729961 289.129410
17 9728.0 438.857162 280.278512 289.667485
18 10240.0 447.650282 287.102804 290.840246
19 10752.0 432.241202 246.935876 290.267711
20 11264.0 427.071098 245.983625 288.204696
21 11776.0 422.457417 249.227509 288.981596
22 12288.0 419.504980 254.453844 295.207195
23 12800.0 413.458944 253.674644 290.359162
24 13312.0 411.181478 252.959629 290.443638
25 13824.0 404.604870 257.190689 292.056329
26 14336.0 397.302533 254.485198 288.402346
27 14848.0 381.942121 257.108233 289.246765
28 15360.0 374.253788 258.151252 287.775181
29 15872.0 366.982663 262.527914 290.562936
0 1024.0 311.088617 99.096776 307.200008
1 1536.0 351.085717 133.083026 341.333333
2 2048.0 423.724127 161.684218 338.979315
3 2560.0 461.954908 182.857144 330.322572
4 3072.0 511.999982 191.501303 316.429186
5 3584.0 554.941930 208.271186 310.527060
6 4096.0 568.231237 220.412561 296.990947
7 4608.0 498.162157 231.849059 289.507855
8 5120.0 525.128191 242.845844 286.433562
9 5632.0 538.517949 243.107920 290.683877
10 6144.0 544.118087 248.451567 286.322318
11 6656.0 527.207907 256.000009 286.536325
12 7168.0 507.469040 262.243907 288.160801
13 7680.0 482.513091 260.338991 276.756754
14 8192.0 460.440290 268.957600 286.600589
15 8704.0 416.958106 267.472468 284.987724
16 9216.0 428.651187 272.729961 289.507855
17 9728.0 438.857162 280.278512 288.950501
18 10240.0 447.650282 286.433562 288.112552
19 10752.0 430.079980 246.464170 290.267711
20 11264.0 429.104745 245.091565 285.767446
21 11776.0 421.198220 249.447482 288.686414
22 12288.0 420.102570 254.453844 294.911986
23 12800.0 415.696898 253.465340 289.811310
24 13312.0 412.242569 252.559690 290.179836
25 13824.0 404.604870 257.190689 292.571423
26 14336.0 397.761846 254.862216 286.481278
27 14848.0 384.414233 257.293872 289.012175
28 15360.0 374.253788 257.610071 288.000007
29 15872.0 367.336555 262.708969 291.229369
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 11.996 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 7.366 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>12:45.742</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>12:39.242</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,19 +183,19 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:23.466</p></td>
<td><p>05:26.818</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:23.713</p></td>
<td><p>03:20.891</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:11.996</p></td>
<td><p>02:07.366</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:46.556</p></td>
<td><p>01:44.156</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>