[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-04-26 00:43:32 +00:00
parent 21613349ac
commit b0a569b724
156 changed files with 302 additions and 302 deletions

View File

@@ -323,14 +323,14 @@ for different problem sizes.</p>
size Triton Torch
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 31.999999 31.999999
2 16384.0 38.400001 38.400001
3 32768.0 76.800002 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 384.000001
6 262144.0 341.333321 341.333321
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 722.823517
9 2097152.0 722.823517 702.171410
10 4194304.0 780.190482 780.190482
11 8388608.0 812.429770 812.429770
12 16777216.0 833.084721 833.084721
@@ -339,7 +339,7 @@ for different problem sizes.</p>
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 40.846 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 43.714 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,17 +374,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 512.000001 190.511628
1 384.0 585.142862 585.142862 151.703707
0 256.0 512.000001 546.133347 190.511628
1 384.0 585.142862 558.545450 151.703707
2 512.0 655.360017 606.814814 154.566038
3 640.0 682.666684 640.000002 160.000000
3 640.0 682.666684 640.000002 158.759699
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 812.359066 405.755985 198.936606
94 12288.0 814.111783 415.661740 199.096718
95 12416.0 814.163950 411.296057 198.854847
96 12544.0 812.566838 412.971190 199.012395
97 12672.0 812.633240 412.097543 199.069228
94 12288.0 814.111783 415.222812 199.096718
95 12416.0 812.498981 411.296057 198.755369
96 12544.0 812.566838 412.971190 198.963085
97 12672.0 812.633240 411.679167 198.971549
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 24.859 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 21.028 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -572,38 +572,38 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
1 384.0 7.372800 ... 8.507077 8.507077
2 512.0 14.563555 ... 16.384000 16.384000
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 31.597714 ... 34.028308 34.028308
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 37.971025 ... 39.025776 39.025776
6 1024.0 49.932191 ... 52.428801 52.428801
7 1152.0 44.566925 ... 46.656000 46.656000
7 1152.0 45.242181 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.109587
9 1408.0 64.138541 ... 67.305878 66.485074
10 1536.0 79.526831 ... 78.643199 78.643199
11 1664.0 62.929456 ... 62.061463 61.636381
12 1792.0 72.512412 ... 62.441243 62.096267
13 1920.0 69.120002 ... 70.172588 70.172588
9 1408.0 64.138541 ... 66.485074 66.485074
10 1536.0 80.430545 ... 79.526831 79.526831
11 1664.0 62.929456 ... 62.492442 62.061463
12 1792.0 72.983276 ... 72.512412 71.588687
13 1920.0 68.776119 ... 70.172588 70.172588
14 2048.0 73.584279 ... 76.959706 76.608294
15 2176.0 83.155572 ... 85.998493 85.269692
16 2304.0 68.056616 ... 76.809875 76.563695
17 2432.0 71.305746 ... 74.918570 84.621881
18 2560.0 77.833728 ... 81.310171 80.709358
19 2688.0 83.922689 ... 89.464755 89.888756
20 2816.0 83.392363 ... 83.074685 83.233226
21 2944.0 81.832567 ... 82.509987 82.921853
22 3072.0 82.062468 ... 88.612060 89.310890
23 3200.0 83.879425 ... 95.451158 95.096582
24 3328.0 83.905938 ... 81.346098 84.695641
25 3456.0 81.849303 ... 91.200871 88.497878
26 3584.0 86.540320 ... 98.808123 98.591437
27 3712.0 81.682211 ... 87.821837 88.170647
28 3840.0 84.292684 ... 91.360593 89.912191
29 3968.0 92.793868 ... 85.034103 91.403695
30 4096.0 87.495257 ... 85.816960 91.180520
16 2304.0 68.251065 ... 76.809875 76.563695
17 2432.0 71.305746 ... 84.621881 84.877538
18 2560.0 77.833728 ... 81.310171 80.908642
19 2688.0 83.922689 ... 90.316801 89.888756
20 2816.0 83.233226 ... 83.074685 83.074685
21 2944.0 81.967162 ... 81.564701 82.373605
22 3072.0 82.420822 ... 88.335577 88.473602
23 3200.0 85.447263 ... 95.451158 94.955488
24 3328.0 83.226931 ... 84.795401 84.795401
25 3456.0 81.849303 ... 89.480098 91.304157
26 3584.0 87.381330 ... 90.549237 94.548254
27 3712.0 85.896254 ... 89.035062 90.650947
28 3840.0 80.901241 ... 86.130841 91.777595
29 3968.0 86.942599 ... 91.747320 86.849777
30 4096.0 93.924236 ... 88.446606 91.867031
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 32.577 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 19.590 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -194,36 +194,36 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 311.088617 99.902435 315.076934
1 1536.0 354.461542 133.083026 344.523365
2 2048.0 423.724127 158.045011 334.367350
3 2560.0 461.954908 182.857144 330.322572
4 3072.0 515.580429 191.501303 320.556515
5 3584.0 551.384634 208.271186 308.301075
6 4096.0 564.965515 220.412561 297.890900
7 4608.0 500.416301 231.849059 287.251954
8 5120.0 529.655159 243.809526 286.433562
9 5632.0 542.843364 244.426754 291.310338
10 6144.0 548.163546 250.775512 287.438593
11 6656.0 536.053693 256.000009 286.793541
12 7168.0 516.612607 253.734520 277.919225
13 7680.0 488.912481 266.743841 285.325090
14 8192.0 463.698115 258.694729 277.694924
15 8704.0 416.958106 267.472468 286.158893
16 9216.0 430.319054 273.066667 289.129410
17 9728.0 440.098002 279.942444 288.950501
18 10240.0 446.836366 287.102804 290.496460
19 10752.0 430.079980 246.935876 289.941565
20 11264.0 429.786952 246.432094 287.897767
21 11776.0 422.457417 249.667843 289.573776
22 12288.0 418.314886 254.673582 294.323369
23 12800.0 416.260178 254.094291 288.993430
24 13312.0 412.775186 252.959629 289.391298
25 13824.0 405.594132 257.190689 292.056329
26 14336.0 398.222222 255.619613 288.402346
27 14848.0 383.586664 256.922861 288.544136
28 15360.0 376.932517 258.513318 288.450715
29 15872.0 368.046389 262.527914 290.120338
0 1024.0 311.088617 98.698793 299.707322
1 1536.0 351.085717 133.083026 338.201833
2 2048.0 420.102553 162.217818 325.509933
3 2560.0 461.954908 183.402991 326.808501
4 3072.0 511.999982 192.501302 315.076914
5 3584.0 547.872604 207.768111 307.199992
6 4096.0 561.737163 221.405403 294.323343
7 4608.0 495.928261 232.336141 294.127651
8 5120.0 520.677950 243.326731 287.102804
9 5632.0 534.260858 241.371422 286.980888
10 6144.0 540.131844 250.349744 287.438593
11 6656.0 527.207907 254.775119 284.748652
12 7168.0 507.469040 254.109315 278.820105
13 7680.0 482.513091 263.690977 280.975614
14 8192.0 459.364487 265.327937 280.467910
15 8704.0 415.300208 264.091015 281.530996
16 9216.0 429.483477 270.065931 287.625496
17 9728.0 435.582084 280.278512 289.667485
18 10240.0 447.650282 285.104413 289.129408
19 10752.0 432.241202 245.994291 289.616170
20 11264.0 428.424741 242.671458 283.371073
21 11776.0 423.089806 248.460649 288.391833
22 12288.0 418.909088 253.796902 294.323369
23 12800.0 415.135142 253.465340 289.265522
24 13312.0 411.711355 252.959629 291.769875
25 13824.0 403.620451 257.190689 291.799461
26 14336.0 399.146178 253.734520 287.919661
27 14848.0 386.498925 258.039095 290.662311
28 15360.0 377.318326 260.338991 288.450715
29 15872.0 367.691129 263.071829 291.675334
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 13.042 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 11.756 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>12:51.335</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>12:36.100</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,19 +183,19 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:32.577</p></td>
<td><p>05:19.590</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:24.859</p></td>
<td><p>03:21.028</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:13.042</p></td>
<td><p>02:11.756</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:40.846</p></td>
<td><p>01:43.714</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>