[FRONTEND][BACKEND] Fixes for cat / reshape / addptr (#959)
Most notably, this PR: - changes the traits (and assembly format) of addptr so it can handle offsets that have arbitrary integer width. - adds support for `cat`
This commit is contained in:
@@ -74,20 +74,20 @@ func @transpose(%arg0: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %arg1: i32 {tt
|
||||
%2 = tt.splat %arg1 : (i32) -> tensor<64x1xi32, #blocked1>
|
||||
%3 = arith.muli %1, %2 : tensor<64x1xi32, #blocked1>
|
||||
%4 = tt.splat %arg0 : (!tt.ptr<f32>) -> tensor<64x1x!tt.ptr<f32>, #blocked1>
|
||||
%5 = tt.addptr %4, %3 : tensor<64x1x!tt.ptr<f32>, #blocked1>
|
||||
%5 = tt.addptr %4, %3 : tensor<64x1x!tt.ptr<f32>, #blocked1>, tensor<64x1xi32, #blocked1>
|
||||
%6 = tt.expand_dims %01 {axis = 0 : i32} : (tensor<64xi32, #slice2dim0>) -> tensor<1x64xi32, #blocked2>
|
||||
%7 = tt.broadcast %5 : (tensor<64x1x!tt.ptr<f32>, #blocked1>) -> tensor<64x64x!tt.ptr<f32>, #blocked1>
|
||||
%8 = tt.broadcast %6 : (tensor<1x64xi32, #blocked2>) -> tensor<64x64xi32, #blocked2>
|
||||
%9 = triton_gpu.convert_layout %8 : (tensor<64x64xi32, #blocked2>) -> tensor<64x64xi32, #blocked1>
|
||||
%10 = tt.addptr %7, %9 : tensor<64x64x!tt.ptr<f32>, #blocked1>
|
||||
%10 = tt.addptr %7, %9 : tensor<64x64x!tt.ptr<f32>, #blocked1>, tensor<64x64xi32, #blocked1>
|
||||
%11 = tt.splat %arg2 : (!tt.ptr<f32>) -> tensor<64x1x!tt.ptr<f32>, #blocked1>
|
||||
%12 = tt.addptr %11, %1 : tensor<64x1x!tt.ptr<f32>, #blocked1>
|
||||
%12 = tt.addptr %11, %1 : tensor<64x1x!tt.ptr<f32>, #blocked1>, tensor<64x1xi32, #blocked1>
|
||||
%13 = tt.splat %arg3 : (i32) -> tensor<1x64xi32, #blocked2>
|
||||
%14 = arith.muli %6, %13 : tensor<1x64xi32, #blocked2>
|
||||
%15 = tt.broadcast %12 : (tensor<64x1x!tt.ptr<f32>, #blocked1>) -> tensor<64x64x!tt.ptr<f32>, #blocked1>
|
||||
%16 = tt.broadcast %14 : (tensor<1x64xi32, #blocked2>) -> tensor<64x64xi32, #blocked2>
|
||||
%17 = triton_gpu.convert_layout %16 : (tensor<64x64xi32, #blocked2>) -> tensor<64x64xi32, #blocked1>
|
||||
%18 = tt.addptr %15, %17 : tensor<64x64x!tt.ptr<f32>, #blocked1>
|
||||
%18 = tt.addptr %15, %17 : tensor<64x64x!tt.ptr<f32>, #blocked1>, tensor<64x64xi32, #blocked1>
|
||||
%19 = triton_gpu.convert_layout %10 : (tensor<64x64x!tt.ptr<f32>, #blocked1>) -> tensor<64x64x!tt.ptr<f32>, #blocked3>
|
||||
%20 = triton_gpu.convert_layout %cst_0 : (tensor<64x64xi1, #blocked1>) -> tensor<64x64xi1, #blocked3>
|
||||
%21 = triton_gpu.convert_layout %cst : (tensor<64x64xf32, #blocked1>) -> tensor<64x64xf32, #blocked3>
|
||||
@@ -106,7 +106,7 @@ func @loop(%arg0: !tt.ptr<f32>, %arg1: i32, %arg2: !tt.ptr<f32>, %arg3: i32, %ar
|
||||
// CHECK: [[loop_ret:%.*]]:2 = scf.for {{.*}} -> (tensor<64x64xf32, [[row_layout]]>, tensor<64x64x!tt.ptr<f32>, [[row_layout]]>)
|
||||
// CHECK-NEXT: {{.*}} = tt.load {{.*}} : tensor<64x64xf32, [[row_layout]]>
|
||||
// CHECK-NEXT: {{.*}} = arith.addf {{.*}} : tensor<64x64xf32, [[row_layout]]>
|
||||
// CHECK-NEXT: {{.*}} = tt.addptr {{.*}} : tensor<64x64x!tt.ptr<f32>, [[row_layout]]>
|
||||
// CHECK-NEXT: {{.*}} = tt.addptr {{.*}} : tensor<64x64x!tt.ptr<f32>, [[row_layout]]>, tensor<64x64xi32, [[row_layout]]>
|
||||
// CHECK-NEXT: scf.yield {{.*}} : tensor<64x64xf32, [[row_layout]]>, tensor<64x64x!tt.ptr<f32>, [[row_layout]]>
|
||||
// CHECK-NEXT: }
|
||||
// CHECK-NEXT: {{.*}} = triton_gpu.convert_layout [[loop_ret]]#0 : (tensor<64x64xf32, [[row_layout]]>) -> tensor<64x64xf32, [[col_layout_novec]]>
|
||||
@@ -123,12 +123,12 @@ func @loop(%arg0: !tt.ptr<f32>, %arg1: i32, %arg2: !tt.ptr<f32>, %arg3: i32, %ar
|
||||
%2 = tt.splat %arg1 : (i32) -> tensor<64x1xi32, #blocked1>
|
||||
%3 = arith.muli %1, %2 : tensor<64x1xi32, #blocked1>
|
||||
%4 = tt.splat %arg0 : (!tt.ptr<f32>) -> tensor<64x1x!tt.ptr<f32>, #blocked1>
|
||||
%5 = tt.addptr %4, %3 : tensor<64x1x!tt.ptr<f32>, #blocked1>
|
||||
%5 = tt.addptr %4, %3 : tensor<64x1x!tt.ptr<f32>, #blocked1>, tensor<64x1xi32, #blocked1>
|
||||
%6 = tt.expand_dims %01 {axis = 0 : i32} : (tensor<64xi32, #slice2dim0>) -> tensor<1x64xi32, #blocked2>
|
||||
%7 = tt.broadcast %5 : (tensor<64x1x!tt.ptr<f32>, #blocked1>) -> tensor<64x64x!tt.ptr<f32>, #blocked1>
|
||||
%8 = tt.broadcast %6 : (tensor<1x64xi32, #blocked2>) -> tensor<64x64xi32, #blocked2>
|
||||
%9 = triton_gpu.convert_layout %8 : (tensor<64x64xi32, #blocked2>) -> tensor<64x64xi32, #blocked1>
|
||||
%10 = tt.addptr %7, %9 : tensor<64x64x!tt.ptr<f32>, #blocked1>
|
||||
%10 = tt.addptr %7, %9 : tensor<64x64x!tt.ptr<f32>, #blocked1>, tensor<64x64xi32, #blocked1>
|
||||
%11:2 = scf.for %arg5 = %c0 to %c32 step %c1 iter_args(%arg6 = %cst_1, %arg7 = %10) -> (tensor<64x64xf32, #blocked1>, tensor<64x64x!tt.ptr<f32>, #blocked1>) {
|
||||
%23 = triton_gpu.convert_layout %arg7 : (tensor<64x64x!tt.ptr<f32>, #blocked1>) -> tensor<64x64x!tt.ptr<f32>, #blocked3>
|
||||
%24 = triton_gpu.convert_layout %cst : (tensor<64x64xi1, #blocked1>) -> tensor<64x64xi1, #blocked3>
|
||||
@@ -136,17 +136,17 @@ func @loop(%arg0: !tt.ptr<f32>, %arg1: i32, %arg2: !tt.ptr<f32>, %arg3: i32, %ar
|
||||
%26 = tt.load %23, %24, %25 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<64x64xf32, #blocked3>
|
||||
%27 = triton_gpu.convert_layout %26 : (tensor<64x64xf32, #blocked3>) -> tensor<64x64xf32, #blocked1>
|
||||
%28 = arith.addf %arg6, %27 : tensor<64x64xf32, #blocked1>
|
||||
%29 = tt.addptr %arg7, %cst_0 : tensor<64x64x!tt.ptr<f32>, #blocked1>
|
||||
%29 = tt.addptr %arg7, %cst_0 : tensor<64x64x!tt.ptr<f32>, #blocked1>, tensor<64x64xi32, #blocked1>
|
||||
scf.yield %28, %29 : tensor<64x64xf32, #blocked1>, tensor<64x64x!tt.ptr<f32>, #blocked1>
|
||||
}
|
||||
%12 = tt.splat %arg2 : (!tt.ptr<f32>) -> tensor<64x1x!tt.ptr<f32>, #blocked1>
|
||||
%13 = tt.addptr %12, %1 : tensor<64x1x!tt.ptr<f32>, #blocked1>
|
||||
%13 = tt.addptr %12, %1 : tensor<64x1x!tt.ptr<f32>, #blocked1>, tensor<64x1xi32, #blocked1>
|
||||
%14 = tt.splat %arg3 : (i32) -> tensor<1x64xi32, #blocked2>
|
||||
%15 = arith.muli %6, %14 : tensor<1x64xi32, #blocked2>
|
||||
%16 = tt.broadcast %13 : (tensor<64x1x!tt.ptr<f32>, #blocked1>) -> tensor<64x64x!tt.ptr<f32>, #blocked1>
|
||||
%17 = tt.broadcast %15 : (tensor<1x64xi32, #blocked2>) -> tensor<64x64xi32, #blocked2>
|
||||
%18 = triton_gpu.convert_layout %17 : (tensor<64x64xi32, #blocked2>) -> tensor<64x64xi32, #blocked1>
|
||||
%19 = tt.addptr %16, %18 : tensor<64x64x!tt.ptr<f32>, #blocked1>
|
||||
%19 = tt.addptr %16, %18 : tensor<64x64x!tt.ptr<f32>, #blocked1>, tensor<64x64xi32, #blocked1>
|
||||
%20 = triton_gpu.convert_layout %19 : (tensor<64x64x!tt.ptr<f32>, #blocked1>) -> tensor<64x64x!tt.ptr<f32>, #blocked1>
|
||||
%21 = triton_gpu.convert_layout %11#0 : (tensor<64x64xf32, #blocked1>) -> tensor<64x64xf32, #blocked1>
|
||||
%22 = triton_gpu.convert_layout %cst : (tensor<64x64xi1, #blocked1>) -> tensor<64x64xi1, #blocked1>
|
||||
@@ -160,27 +160,27 @@ func @vecadd(%arg0: !tt.ptr<f32> {tt.divisibility = 16 : i32}, %arg1: !tt.ptr<f3
|
||||
%c256_i32 = arith.constant 256 : i32
|
||||
%0 = tt.get_program_id {axis = 0 : i32} : i32
|
||||
%1 = arith.muli %0, %c256_i32 : i32
|
||||
%2 = tt.splat %1 : (i32) -> tensor<256xi32, #triton_gpu.blocked<{sizePerThread = [4], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>>
|
||||
%3 = tt.make_range {end = 256 : i32, start = 0 : i32} : tensor<256xi32, #triton_gpu.blocked<{sizePerThread = [4], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>>
|
||||
%4 = tt.splat %1 : (i32) -> tensor<256xi32, #triton_gpu.blocked<{sizePerThread = [4], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>>
|
||||
%5 = tt.make_range {end = 256 : i32, start = 0 : i32} : tensor<256xi32, #triton_gpu.blocked<{sizePerThread = [4], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>>
|
||||
%6 = tt.splat %1 : (i32) -> tensor<256xi32, #triton_gpu.blocked<{sizePerThread = [4], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>>
|
||||
%7 = tt.make_range {end = 256 : i32, start = 0 : i32} : tensor<256xi32, #triton_gpu.blocked<{sizePerThread = [4], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>>
|
||||
%8 = tt.splat %arg0 : (!tt.ptr<f32>) -> tensor<256x!tt.ptr<f32>, #triton_gpu.blocked<{sizePerThread = [4], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>>
|
||||
%9 = arith.addi %6, %7 : tensor<256xi32, #triton_gpu.blocked<{sizePerThread = [4], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>>
|
||||
%10 = tt.splat %arg1 : (!tt.ptr<f32>) -> tensor<256x!tt.ptr<f32>, #triton_gpu.blocked<{sizePerThread = [4], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>>
|
||||
%11 = arith.addi %4, %5 : tensor<256xi32, #triton_gpu.blocked<{sizePerThread = [4], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>>
|
||||
%12 = tt.addptr %8, %9 : tensor<256x!tt.ptr<f32>, #triton_gpu.blocked<{sizePerThread = [4], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>>
|
||||
%13 = tt.load %12 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<256xf32, #triton_gpu.blocked<{sizePerThread = [4], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>>
|
||||
%14 = triton_gpu.convert_layout %13 : (tensor<256xf32, #triton_gpu.blocked<{sizePerThread = [4], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>>) -> tensor<256xf32, #triton_gpu.blocked<{sizePerThread = [1], threadsPerWarp = [32], warpsPerCTA = [2], order = [0]}>>
|
||||
%15 = tt.addptr %10, %11 : tensor<256x!tt.ptr<f32>, #triton_gpu.blocked<{sizePerThread = [4], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>>
|
||||
%16 = tt.load %15 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<256xf32, #triton_gpu.blocked<{sizePerThread = [4], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>>
|
||||
%17 = triton_gpu.convert_layout %16 : (tensor<256xf32, #triton_gpu.blocked<{sizePerThread = [4], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>>) -> tensor<256xf32, #triton_gpu.blocked<{sizePerThread = [1], threadsPerWarp = [32], warpsPerCTA = [2], order = [0]}>>
|
||||
%2 = tt.splat %1 : (i32) -> tensor<256xi32, #layout1>
|
||||
%3 = tt.make_range {end = 256 : i32, start = 0 : i32} : tensor<256xi32, #layout1>
|
||||
%4 = tt.splat %1 : (i32) -> tensor<256xi32, #layout1>
|
||||
%5 = tt.make_range {end = 256 : i32, start = 0 : i32} : tensor<256xi32, #layout1>
|
||||
%6 = tt.splat %1 : (i32) -> tensor<256xi32, #layout1>
|
||||
%7 = tt.make_range {end = 256 : i32, start = 0 : i32} : tensor<256xi32, #layout1>
|
||||
%8 = tt.splat %arg0 : (!tt.ptr<f32>) -> tensor<256x!tt.ptr<f32>, #layout1>
|
||||
%9 = arith.addi %6, %7 : tensor<256xi32, #layout1>
|
||||
%10 = tt.splat %arg1 : (!tt.ptr<f32>) -> tensor<256x!tt.ptr<f32>, #layout1>
|
||||
%11 = arith.addi %4, %5 : tensor<256xi32, #layout1>
|
||||
%12 = tt.addptr %8, %9 : tensor<256x!tt.ptr<f32>, #layout1>, tensor<256xi32, #layout1>
|
||||
%13 = tt.load %12 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<256xf32, #layout1>
|
||||
%14 = triton_gpu.convert_layout %13 : (tensor<256xf32, #layout1>) -> tensor<256xf32, #triton_gpu.blocked<{sizePerThread = [1], threadsPerWarp = [32], warpsPerCTA = [2], order = [0]}>>
|
||||
%15 = tt.addptr %10, %11 : tensor<256x!tt.ptr<f32>, #layout1>, tensor<256xi32, #layout1>
|
||||
%16 = tt.load %15 {cache = 1 : i32, evict = 1 : i32, isVolatile = false} : tensor<256xf32, #layout1>
|
||||
%17 = triton_gpu.convert_layout %16 : (tensor<256xf32, #layout1>) -> tensor<256xf32, #triton_gpu.blocked<{sizePerThread = [1], threadsPerWarp = [32], warpsPerCTA = [2], order = [0]}>>
|
||||
%18 = arith.addf %14, %17 : tensor<256xf32, #triton_gpu.blocked<{sizePerThread = [1], threadsPerWarp = [32], warpsPerCTA = [2], order = [0]}>>
|
||||
%19 = tt.splat %arg2 : (!tt.ptr<f32>) -> tensor<256x!tt.ptr<f32>, #triton_gpu.blocked<{sizePerThread = [4], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>>
|
||||
%20 = arith.addi %2, %3 : tensor<256xi32, #triton_gpu.blocked<{sizePerThread = [4], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>>
|
||||
%21 = tt.addptr %19, %20 : tensor<256x!tt.ptr<f32>, #triton_gpu.blocked<{sizePerThread = [4], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>>
|
||||
%22 = triton_gpu.convert_layout %18 : (tensor<256xf32, #triton_gpu.blocked<{sizePerThread = [1], threadsPerWarp = [32], warpsPerCTA = [2], order = [0]}>>) -> tensor<256xf32, #triton_gpu.blocked<{sizePerThread = [4], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>>
|
||||
tt.store %21, %22 : tensor<256xf32, #triton_gpu.blocked<{sizePerThread = [4], threadsPerWarp = [32], warpsPerCTA = [4], order = [0]}>>
|
||||
%19 = tt.splat %arg2 : (!tt.ptr<f32>) -> tensor<256x!tt.ptr<f32>, #layout1>
|
||||
%20 = arith.addi %2, %3 : tensor<256xi32, #layout1>
|
||||
%21 = tt.addptr %19, %20 : tensor<256x!tt.ptr<f32>, #layout1>, tensor<256xi32, #layout1>
|
||||
%22 = triton_gpu.convert_layout %18 : (tensor<256xf32, #triton_gpu.blocked<{sizePerThread = [1], threadsPerWarp = [32], warpsPerCTA = [2], order = [0]}>>) -> tensor<256xf32, #layout1>
|
||||
tt.store %21, %22 : tensor<256xf32, #layout1>
|
||||
return
|
||||
}
|
||||
|
Reference in New Issue
Block a user