C++: More clBLAS routines

This commit is contained in:
Philippe Tillet
2015-06-25 08:12:16 -07:00
parent a42112f8f3
commit b32de3ac76
4 changed files with 310 additions and 178 deletions

View File

@@ -99,6 +99,7 @@ void bench(ad::numeric_type dtype, std::string operation)
double total_time = 0;\
while(total_time*1e-9 < 1e-3){\
cl::Event event;\
flush = ad::zeros(1e6, 1, dtype);\
OP;\
queue.synchronize();\
times.push_back(event.getProfilingInfo<CL_PROFILING_COMMAND_END>() - event.getProfilingInfo<CL_PROFILING_COMMAND_START>());\
@@ -146,8 +147,7 @@ void bench(ad::numeric_type dtype, std::string operation)
ad::array flush(1e6, dtype);
std::cout << "#" << operation << " (" << metric[operation] << ")" << std::endl;
std::cout << "N";
std::cout << "\tISAAC (predictive)";
std::cout << "\tISAAC (optimal)";
std::cout << "\tISAAC";
#ifdef BENCH_CLBLAS
std::cout << "\tclBLAS";
#endif
@@ -162,142 +162,143 @@ void bench(ad::numeric_type dtype, std::string operation)
// RUN BENCHMARKS
//
// /*---------*/
// /*--BLAS1--*/
// /*---------*/
/*---------*/
/*--BLAS1--*/
/*---------*/
// if(operation=="axpy")
// {
// for(int_t N: create_log_range(1e3, 2e7, 50, 64))
// {
// std::cout << N;
// ad::array x(N, dtype), y(N, dtype);
// /* ISAAC */
// std::list<ad::driver::Event> events;\
// BENCHMARK_ISAAC(y = ad::control(x + y, ad::execution_options_type(0, &events), ad::dispatcher_options_type(false)), 3*N*dtsize/t)
// BENCHMARK_ISAAC(y = ad::control(x + y, ad::execution_options_type(0, &events), ad::dispatcher_options_type(true)), 3*N*dtsize/t)
// /* clblas */
// #ifdef BENCH_CLBLAS
// BENCHMARK_CLBLAS(clblasSaxpy(N, 1, CL_HANDLE(x.data()), 0, 1, CL_HANDLE(y.data()), 0, 1, 1, &CL_HANDLE(queue), 0, NULL, &event()), 3*N*dtsize/t)
// #endif
// /* BLAS */
// #ifdef BENCH_CBLAS
// std::vector<float> cx(N), cy(N);
// ad::copy(x, cx);
// ad::copy(y, cy);
// BENCHMARK_HOST(cblas_saxpy(N, 1, cx.data(), 1, cy.data(), 1), 3*N*dtsize/t);
// #endif
// /* CuBLAS */
// #ifdef BENCH_CUBLAS
// T *cux, *cuy;
// cudaMalloc((void**) &cux, N * sizeof(T));
// cudaMalloc((void**) &cuy, N * sizeof(T));
// BENCHMARK_CUDA(cublasSaxpy(N, 2, cux, 1, cuy, 1), 3*N*dtsize/t)
// cudaFree(cux);
// cudaFree(cuy);
// #endif
// std::cout << std::endl;
// }
// }
if(operation=="axpy")
{
float alpha = 1;
for(int_t N: create_log_range(1e3, 2e7, 50, 64))
{
std::cout << N;
ad::array x(N, dtype), y(N, dtype);
/* ISAAC */
std::list<ad::driver::Event> events;\
BENCHMARK_ISAAC(y = ad::control(x + alpha*y, ad::execution_options_type(0, &events)), 3*N*dtsize/t)
/* clblas */
#ifdef BENCH_CLBLAS
BENCHMARK_CLBLAS(clblasSaxpy(N, alpha, CL_HANDLE(x.data()), 0, 1, CL_HANDLE(y.data()), 0, 1, 1, &CL_HANDLE(queue), 0, NULL, &event()), 3*N*dtsize/t)
#endif
/* BLAS */
#ifdef BENCH_CBLAS
std::vector<float> cx(N), cy(N);
ad::copy(x, cx);
ad::copy(y, cy);
BENCHMARK_HOST(cblas_saxpy(N, alpha, cx.data(), 1, cy.data(), 1), 3*N*dtsize/t);
#endif
/* CuBLAS */
#ifdef BENCH_CUBLAS
T *cux, *cuy;
cudaMalloc((void**) &cux, N * sizeof(T));
cudaMalloc((void**) &cuy, N * sizeof(T));
BENCHMARK_CUDA(cublasSaxpy(N, alpha, cux, 1, cuy, 1), 3*N*dtsize/t)
cudaFree(cux);
cudaFree(cuy);
#endif
std::cout << std::endl;
}
}
// if(operation=="dot")
// {
// for(int_t N: create_log_range(1e3, 2e7, 50, 64))
// {
// std::cout << N;
// /* ISAAC */
// ad::array x(N, dtype), y(N, dtype);
// ad::array scratch(N, dtype);
// ad::scalar s(dtype);
// s = dot(x,y); queue.synchronize();
// BENCHMARK_ISAAC(s = ad::control(dot(x,y), ad::execution_options_type(0, &events), ad::dispatcher_options_type(true)), 2*N*dtsize/t)
// /* clblas */
// #ifdef BENCH_CLBLAS
// BENCHMARK_CLBLAS(clblasSdot(N, CL_HANDLE(s.data()), 0, CL_HANDLE(x.data()), 0, 1, CL_HANDLE(y.data()), 0, 1, CL_HANDLE(scratch.data()), 1, &CL_HANDLE(queue), 0, NULL, &event()), 2*N*dtsize/t)
// #endif
// /* BLAS */
// #ifdef BENCH_CBLAS
// std::vector<float> cx(N), cy(N);
// ad::copy(x, cx);
// ad::copy(y, cy);
// BENCHMARK_HOST(cblas_sdot(N, cx.data(), 1, cy.data(), 1), 2*N*dtsize/t);
// #endif
// #ifdef BENCH_CUBLAS
// T *cux, *cuy;
// T result;
// cudaMalloc((void**) &cux, N * sizeof(T));
// cudaMalloc((void**) &cuy, N * sizeof(T));
// BENCHMARK_CUDA(cublasSdot(N, cux, 1, cuy, 1), 2*N*dtsize/t)
// cudaFree(cux);
// cudaFree(cuy);
// #endif
// std::cout << std::endl;
// }
// std::cout << "\n\n" << std::flush;
// }
if(operation=="dot")
{
for(int_t N: create_log_range(1e3, 2e7, 50, 64))
{
std::cout << N;
/* ISAAC */
ad::array x(N, dtype), y(N, dtype);
ad::array scratch(N, dtype);
ad::scalar s(dtype);
s = dot(x,y); queue.synchronize();
BENCHMARK_ISAAC(s = ad::control(dot(x,y), ad::execution_options_type(0, &events)), 2*N*dtsize/t)
/* clblas */
#ifdef BENCH_CLBLAS
BENCHMARK_CLBLAS(clblasSdot(N, CL_HANDLE(s.data()), 0, CL_HANDLE(x.data()), 0, 1, CL_HANDLE(y.data()), 0, 1, CL_HANDLE(scratch.data()), 1, &CL_HANDLE(queue), 0, NULL, &event()), 2*N*dtsize/t)
#endif
/* BLAS */
#ifdef BENCH_CBLAS
std::vector<float> cx(N), cy(N);
ad::copy(x, cx);
ad::copy(y, cy);
BENCHMARK_HOST(cblas_sdot(N, cx.data(), 1, cy.data(), 1), 2*N*dtsize/t);
#endif
#ifdef BENCH_CUBLAS
T *cux, *cuy;
T result;
cudaMalloc((void**) &cux, N * sizeof(T));
cudaMalloc((void**) &cuy, N * sizeof(T));
BENCHMARK_CUDA(cublasSdot(N, cux, 1, cuy, 1), 2*N*dtsize/t)
cudaFree(cux);
cudaFree(cuy);
#endif
std::cout << std::endl;
}
std::cout << "\n\n" << std::flush;
}
// if(operation.substr(0, 4)=="gemv")
// {
// std::vector<std::tuple<int_t, int_t> > MNs;
// MNs.push_back(std::make_tuple(896,896));
// MNs.push_back(std::make_tuple(3072,3072));
// MNs.push_back(std::make_tuple(64,32000));
// MNs.push_back(std::make_tuple(896,32000));
// MNs.push_back(std::make_tuple(32000, 64));
// MNs.push_back(std::make_tuple(32000, 896));
if(operation.substr(0, 4)=="gemv")
{
std::vector<std::tuple<int_t, int_t> > MNs;
MNs.push_back(std::make_tuple(896,896));
MNs.push_back(std::make_tuple(3072,3072));
MNs.push_back(std::make_tuple(64,32000));
MNs.push_back(std::make_tuple(896,32000));
MNs.push_back(std::make_tuple(32000, 64));
MNs.push_back(std::make_tuple(32000, 896));
// /*---------*/
// /*--BLAS2--*/
// /*---------*/
// //T-layout
// for(std::tuple<int_t, int_t> MN: MNs)
// {
// int_t M = std::get<0>(MN);
// int_t N = std::get<1>(MN);
// std::cout << M << "," << N;
// /* ISAAC */
// ad::array A(N, M, dtype), y(M, dtype), x(N, dtype);
// #if HAS_A_BLAS
// int_t lda = A.ld();
// #endif
// y = dot(trans(A),x); queue.synchronize();
// BENCHMARK_ISAAC(y = ad::control(dot(trans(A),x), ad::execution_options_type(0, &events), ad::dispatcher_options_type(false)),(M*N + M + N)*dtsize/t);
// BENCHMARK_ISAAC(y = ad::control(dot(trans(A),x), ad::execution_options_type(0, &events), ad::dispatcher_options_type(true)),(M*N + M + N)*dtsize/t);
// #ifdef BENCH_CLBLAS
// BENCHMARK_CLBLAS(clblasSgemv(clblasColumnMajor, clblasTrans, N, M, 1, CL_HANDLE(A.data()), 0, lda, CL_HANDLE(x.data()), 0, 1, 0, CL_HANDLE(y.data()), 0, 1, 1, &CL_HANDLE(queue),0, NULL, &event()), (M*N + M + N)*dtsize/t)
// #endif
// #ifdef BENCH_CBLAS
// std::vector<float> cA(N*M), cx(N), cy(M);
// ad::copy(x, cx);
// ad::copy(y, cy);
// ad::copy(A, cA);
// BENCHMARK_HOST(cblas_sgemv(CblasColMajor, CblasTrans, N, M, 1, cA.data(), lda, cx.data(), 1, 0, cy.data(), 1), (M*N + M + N)*dtsize/t);
// #endif
// #ifdef BENCH_CUBLAS
// T *cuA, *cux, *cuy;
// cudaMalloc((void**) &cuA, N * M * sizeof(T));
// cudaMalloc((void**) &cux, N * sizeof(T));
// cudaMalloc((void**) &cuy, M * sizeof(T));
// BENCHMARK_CUDA(cublasSgemv('t', N, M, 1, cuA, lda, cux, 1, 0, cuy, 1), (M*N + M + N)*dtsize/t)
// cudaFree(cuA);
// cudaFree(cux);
// cudaFree(cuy);
// #endif
// std::cout << std::endl;
// }
// std::cout << "\n\n" << std::flush;
// }
/*---------*/
/*--BLAS2--*/
/*---------*/
//T-layout
for(std::tuple<int_t, int_t> MN: MNs)
{
int_t M = std::get<0>(MN);
int_t N = std::get<1>(MN);
std::cout << M << "," << N;
/* ISAAC */
ad::array A(N, M, dtype), y(M, dtype), x(N, dtype);
#if HAS_A_BLAS
int_t lda = A.ld();
#endif
y = dot(trans(A),x); queue.synchronize();
BENCHMARK_ISAAC(y = ad::control(dot(trans(A),x), ad::execution_options_type(0, &events)),(M*N + M + N)*dtsize/t);
#ifdef BENCH_CLBLAS
BENCHMARK_CLBLAS(clblasSgemv(clblasColumnMajor, clblasTrans, N, M, 1, CL_HANDLE(A.data()), 0, lda, CL_HANDLE(x.data()), 0, 1, 0, CL_HANDLE(y.data()), 0, 1, 1, &CL_HANDLE(queue),0, NULL, &event()), (M*N + M + N)*dtsize/t)
#endif
#ifdef BENCH_CBLAS
std::vector<float> cA(N*M), cx(N), cy(M);
ad::copy(x, cx);
ad::copy(y, cy);
ad::copy(A, cA);
BENCHMARK_HOST(cblas_sgemv(CblasColMajor, CblasTrans, N, M, 1, cA.data(), lda, cx.data(), 1, 0, cy.data(), 1), (M*N + M + N)*dtsize/t);
#endif
#ifdef BENCH_CUBLAS
T *cuA, *cux, *cuy;
cudaMalloc((void**) &cuA, N * M * sizeof(T));
cudaMalloc((void**) &cux, N * sizeof(T));
cudaMalloc((void**) &cuy, M * sizeof(T));
BENCHMARK_CUDA(cublasSgemv('t', N, M, 1, cuA, lda, cux, 1, 0, cuy, 1), (M*N + M + N)*dtsize/t)
cudaFree(cuA);
cudaFree(cux);
cudaFree(cuy);
#endif
std::cout << std::endl;
}
std::cout << "\n\n" << std::flush;
}
if(operation.substr(0,4)=="gemm")
{
std::vector<std::tuple<int_t, int_t, int_t> > MNKs;
MNKs.push_back(std::make_tuple(896,896,896));
MNKs.push_back(std::make_tuple(3072,3072,3072));
MNKs.push_back(std::make_tuple(1024,64,768));
MNKs.push_back(std::make_tuple(768,64,128));
MNKs.push_back(std::make_tuple(64,64,32000));
MNKs.push_back(std::make_tuple(1024,1024,32000));
// MNKs.push_back(std::make_tuple(896,896,896));
// MNKs.push_back(std::make_tuple(3072,3072,3072));
// MNKs.push_back(std::make_tuple(1024,64,768));
// MNKs.push_back(std::make_tuple(768,64,128));
// MNKs.push_back(std::make_tuple(64,64,32000));
// MNKs.push_back(std::make_tuple(1024,1024,32000));
for(unsigned int N = 1 ; N <10 ; ++N)
MNKs.push_back(std::make_tuple(128*N, 128*N, 128*N));
/*---------*/
/*--BLAS3--*/
/*---------*/
@@ -312,8 +313,7 @@ void bench(ad::numeric_type dtype, std::string operation)
#if HAS_A_BLAS
int_t lda = A.ld(), ldb = B.ld(), ldc = C.ld();
#endif
// BENCHMARK_ISAAC(C = ad::control(dot(A,trans(B)), ad::execution_options_type(0, &events), ad::dispatcher_options_type(false)), (double)2*M*N*K/t);
//BENCHMARK_ISAAC(C = ad::control(dot(A,trans(B)), ad::execution_options_type(0, &events), ad::dispatcher_options_type(true)), (double)2*M*N*K/t);
BENCHMARK_ISAAC(C = ad::control(dot(A,trans(B)), ad::execution_options_type(0, &events)), (double)2*M*N*K/t);
/* clblas */
#ifdef BENCH_CLBLAS
BENCHMARK_CLBLAS(clblasSgemm(clblasColumnMajor, clblasNoTrans, clblasTrans, M, N, K, 1, CL_HANDLE(A.data()), 0, lda, CL_HANDLE(B.data()), 0, ldb,