up
This commit is contained in:
@@ -148,46 +148,51 @@ def test_gemm(SIZE_M, SIZE_N, SIZE_K, NUM_WARPS, BLOCK_SIZE_M, BLOCK_SIZE_N, BLO
|
|||||||
|
|
||||||
# Precession regression for FMADot is not done yet due to some issue on the optimizer failed to give a blocked layout to dot op.
|
# Precession regression for FMADot is not done yet due to some issue on the optimizer failed to give a blocked layout to dot op.
|
||||||
# TODO[Superjomn]: Uncomment this test and continue to finish precession regression latter.
|
# TODO[Superjomn]: Uncomment this test and continue to finish precession regression latter.
|
||||||
# @pytest.mark.parametrize('M,N,K,num_warps,block_M,block_N,block_K', [
|
@pytest.mark.parametrize('M,N,K,num_warps,block_M,block_N,block_K', [
|
||||||
# [128, 256, 128, 4, 128, 256, 32],
|
[128, 256, 128, 4, 128, 256, 32],
|
||||||
# [256, 128, 64, 4, 256, 128, 16],
|
[256, 128, 64, 4, 256, 128, 16],
|
||||||
# [128, 64, 128, 4, 128, 64, 32],
|
[128, 64, 128, 4, 128, 64, 32],
|
||||||
# ])
|
])
|
||||||
# def test_gemm_fmadot(M, N, K, num_warps, block_M, block_N, block_K):
|
def test_gemm_fmadot(M, N, K, num_warps, block_M, block_N, block_K):
|
||||||
# @triton.jit
|
@triton.jit
|
||||||
# def matmul_kernel(
|
def matmul_kernel(
|
||||||
# a_ptr, b_ptr, c_ptr,
|
a_ptr, b_ptr, c_ptr,
|
||||||
# stride_am, stride_ak,
|
stride_am, stride_ak,
|
||||||
# stride_bk, stride_bn,
|
stride_bk, stride_bn,
|
||||||
# stride_cm, stride_cn,
|
stride_cm, stride_cn,
|
||||||
# K: tl.constexpr,
|
K: tl.constexpr,
|
||||||
# BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
|
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr,
|
||||||
# ):
|
):
|
||||||
# offs_m = tl.arange(0, BLOCK_SIZE_M)
|
offs_m = tl.arange(0, BLOCK_SIZE_M)
|
||||||
# offs_n = tl.arange(0, BLOCK_SIZE_N)
|
offs_n = tl.arange(0, BLOCK_SIZE_N)
|
||||||
# offs_k = tl.arange(0, BLOCK_SIZE_K)
|
offs_k = tl.arange(0, BLOCK_SIZE_K)
|
||||||
# a_ptrs = a_ptr + offs_m[:, None] * stride_am + offs_k[None, :] * stride_ak
|
a_ptrs = a_ptr + offs_m[:, None] * stride_am + offs_k[None, :] * stride_ak
|
||||||
# b_ptrs = b_ptr + offs_k[:, None] * stride_bk + offs_n[None, :] * stride_bn
|
b_ptrs = b_ptr + offs_k[:, None] * stride_bk + offs_n[None, :] * stride_bn
|
||||||
# accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
|
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
|
||||||
# for k in range(0, K, BLOCK_SIZE_K):
|
for k in range(0, K, BLOCK_SIZE_K):
|
||||||
# a = tl.load(a_ptrs)
|
a = tl.load(a_ptrs)
|
||||||
# b = tl.load(b_ptrs)
|
b = tl.load(b_ptrs)
|
||||||
# accumulator += tl.dot(a, b, allow_tf32=True)
|
# NOTE the allow_tf32 should be false to force the dot op to do fmadot lowering
|
||||||
# a_ptrs += BLOCK_SIZE_K * stride_ak
|
accumulator += tl.dot(a, b, allow_tf32=False)
|
||||||
# b_ptrs += BLOCK_SIZE_K * stride_bk
|
a_ptrs += BLOCK_SIZE_K * stride_ak
|
||||||
|
b_ptrs += BLOCK_SIZE_K * stride_bk
|
||||||
|
|
||||||
# c_ptrs = c_ptr + offs_m[:, None] * stride_cm + offs_n[None, :] * stride_cn
|
c_ptrs = c_ptr + offs_m[:, None] * stride_cm + offs_n[None, :] * stride_cn
|
||||||
# tl.store(c_ptrs, accumulator)
|
tl.store(c_ptrs, accumulator)
|
||||||
|
|
||||||
# a = torch.randn((M, K), device='cuda', dtype=torch.float32)
|
a = torch.randn((M, K), device='cuda', dtype=torch.float32)
|
||||||
# b = torch.randn((K, N), device='cuda', dtype=torch.float)
|
b = torch.randn((K, N), device='cuda', dtype=torch.float)
|
||||||
# c = torch.empty((M, N), device=a.device, dtype=torch.float32)
|
c = torch.empty((M, N), device=a.device, dtype=torch.float32)
|
||||||
# grid = lambda META: (1, )
|
grid = lambda META: (1, )
|
||||||
# matmul_kernel[grid](a_ptr=a, b_ptr=b, c_ptr=c,
|
matmul_kernel[grid](a_ptr=a, b_ptr=b, c_ptr=c,
|
||||||
# stride_am=a.stride(0), stride_ak=a.stride(1),
|
stride_am=a.stride(0), stride_ak=a.stride(1),
|
||||||
# stride_bk=b.stride(0), stride_bn=b.stride(1),
|
stride_bk=b.stride(0), stride_bn=b.stride(1),
|
||||||
# stride_cm=c.stride(0), stride_cn=c.stride(1),
|
stride_cm=c.stride(0), stride_cn=c.stride(1),
|
||||||
# K=a.shape[1], BLOCK_SIZE_M=block_M, BLOCK_SIZE_N=block_N,
|
K=a.shape[1], BLOCK_SIZE_M=block_M, BLOCK_SIZE_N=block_N,
|
||||||
# BLOCK_SIZE_K=block_K, num_warps=num_warps)
|
BLOCK_SIZE_K=block_K, num_warps=num_warps)
|
||||||
# golden = torch.matmul(a, b)
|
golden = torch.matmul(a, b)
|
||||||
# torch.testing.assert_close(c, golden)
|
torch.testing.assert_close(c, golden)
|
||||||
|
|
||||||
|
|
||||||
|
#test_gemm_no_scf(*[64, 128, 128, 2])
|
||||||
|
test_gemm_fmadot(*[128, 64, 128, 4, 128, 64, 32])
|
||||||
|
Reference in New Issue
Block a user