[GH-PAGES] Updated website

This commit is contained in:
Philippe Tillet
2022-08-20 00:47:58 +00:00
parent a7462d444b
commit b4367e5d30
165 changed files with 234 additions and 234 deletions

View File

@@ -324,10 +324,10 @@ for different problem sizes.</p>
0 4096.0 9.600000 9.600000
1 8192.0 19.200000 19.200000
2 16384.0 38.400001 38.400001
3 32768.0 63.999998 63.999998
3 32768.0 76.800002 76.800002
4 65536.0 127.999995 127.999995
5 131072.0 219.428568 219.428568
6 262144.0 341.333321 384.000001
6 262144.0 341.333321 341.333321
7 524288.0 472.615390 472.615390
8 1048576.0 614.400016 614.400016
9 2097152.0 722.823517 722.823517
@@ -339,7 +339,7 @@ for different problem sizes.</p>
15 134217728.0 849.737435 850.656574
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 45.533 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 1 minutes 44.125 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-01-vector-add-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/62d97d49a32414049819dd8bb8378080/01-vector-add.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">01-vector-add.py</span></code></a></p>

View File

@@ -374,17 +374,17 @@ We will then compare its performance against (1) <code class="code docutils lite
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>softmax-performance:
N Triton Torch (native) Torch (jit)
0 256.0 512.000001 546.133347 186.181817
1 384.0 585.142862 585.142862 153.600004
0 256.0 512.000001 546.133347 188.321838
1 384.0 614.400016 585.142862 153.600004
2 512.0 655.360017 606.814814 154.566038
3 640.0 682.666684 640.000002 160.000000
4 768.0 722.823517 664.216187 162.754967
.. ... ... ... ...
93 12160.0 814.058574 406.179533 198.530610
94 12288.0 814.111783 415.661740 198.895304
95 12416.0 812.498981 412.149375 198.457532
96 12544.0 812.566838 412.546756 198.716830
97 12672.0 812.633240 412.097543 198.776477
93 12160.0 814.058574 406.179533 198.936606
94 12288.0 814.111783 415.661740 199.298541
95 12416.0 812.498981 412.149375 198.854847
96 12544.0 812.566838 412.971190 199.111113
97 12672.0 812.633240 412.097543 199.264875
[98 rows x 4 columns]
</pre></div>
@@ -397,7 +397,7 @@ We will then compare its performance against (1) <code class="code docutils lite
Note however that the PyTorch <cite>softmax</cite> operation is more general and will works on tensors of any shape.</p></li>
</ul>
</div></blockquote>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 23.377 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 3 minutes 21.143 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-02-fused-softmax-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d91442ac2982c4e0cc3ab0f43534afbc/02-fused-softmax.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">02-fused-softmax.py</span></code></a></p>

View File

@@ -568,42 +568,42 @@ torch_output=tensor([[ 1.1045, -36.9688, 31.4688, ..., -11.3906, 24.4531, -3
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>matmul-performance:
M cuBLAS ... Triton Triton (+ LeakyReLU)
0 256.0 2.730667 ... 2.978909 2.978909
1 384.0 7.372800 ... 7.899428 7.899428
0 256.0 2.730667 ... 3.276800 2.978909
1 384.0 7.372800 ... 8.507077 7.899428
2 512.0 14.563555 ... 16.384000 15.420235
3 640.0 22.260869 ... 24.380953 24.380953
4 768.0 32.768000 ... 34.028308 34.028308
5 896.0 39.025776 ... 40.140799 39.025776
6 1024.0 51.150050 ... 52.428801 52.428801
6 1024.0 51.150050 ... 53.773130 52.428801
7 1152.0 45.242181 ... 46.656000 46.656000
8 1280.0 51.200001 ... 56.888887 56.888887
9 1408.0 64.138541 ... 67.305878 67.305878
10 1536.0 80.430545 ... 79.526831 79.526831
11 1664.0 63.372618 ... 62.492442 62.061463
12 1792.0 72.983276 ... 72.047592 71.588687
13 1920.0 69.120002 ... 70.530615 70.172588
14 2048.0 73.908442 ... 77.314362 76.959706
8 1280.0 51.200001 ... 56.888887 56.109587
9 1408.0 64.138541 ... 66.485074 66.485074
10 1536.0 80.430545 ... 79.526831 78.643199
11 1664.0 62.929456 ... 62.061463 62.061463
12 1792.0 72.512412 ... 72.047592 71.588687
13 1920.0 69.120002 ... 70.530615 70.530615
14 2048.0 73.908442 ... 76.959706 76.959706
15 2176.0 83.500614 ... 86.367588 85.632545
16 2304.0 68.251065 ... 76.319081 76.319081
17 2432.0 71.305746 ... 74.918570 84.877538
18 2560.0 78.019048 ... 80.908642 81.108913
19 2688.0 83.186525 ... 89.464755 89.254248
20 2816.0 79.879498 ... 82.602666 82.602666
21 2944.0 82.921853 ... 82.784108 82.921853
22 3072.0 81.825298 ... 88.473602 89.310890
23 3200.0 82.901554 ... 94.674553 94.117647
24 3328.0 83.226931 ... 84.200347 83.905938
25 3456.0 80.380430 ... 91.097818 86.596744
26 3584.0 84.745889 ... 94.250936 94.947616
27 3712.0 81.548851 ... 87.706180 86.754095
28 3840.0 82.654712 ... 90.723546 86.030338
29 3968.0 91.816356 ... 85.211320 91.130650
30 4096.0 86.258181 ... 93.239129 89.240508
16 2304.0 68.251065 ... 76.809875 76.563695
17 2432.0 71.305746 ... 85.393507 84.877538
18 2560.0 78.019048 ... 80.709358 80.709358
19 2688.0 83.369354 ... 90.102270 89.464755
20 2816.0 82.446516 ... 82.213395 82.135981
21 2944.0 82.102191 ... 83.198715 82.921853
22 3072.0 81.589488 ... 87.651868 82.721850
23 3200.0 80.402009 ... 95.025983 94.955488
24 3328.0 83.323259 ... 81.254285 83.710812
25 3456.0 81.849303 ... 90.281712 90.994998
26 3584.0 84.033077 ... 91.563533 97.416461
27 3712.0 85.601834 ... 89.114488 87.246590
28 3840.0 84.356981 ... 87.080314 91.398346
29 3968.0 87.035620 ... 91.403695 84.797731
30 4096.0 93.596744 ... 91.335643 87.267706
[31 rows x 5 columns]
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 26.200 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 5 minutes 26.004 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-03-matrix-multiplication-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/d5fee5b55a64e47f1b5724ec39adf171/03-matrix-multiplication.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">03-matrix-multiplication.py</span></code></a></p>

View File

@@ -371,7 +371,7 @@ to explore the <cite>triton/language/random</cite> folder!</p>
<dd><p>Nitish Srivastava and Geoffrey Hinton and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, JMLR 2014</p>
</dd>
</dl>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.011 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 0 minutes 0.010 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-04-low-memory-dropout-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/c9aed78977a4c05741d675a38dde3d7d/04-low-memory-dropout.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">04-low-memory-dropout.py</span></code></a></p>

View File

@@ -194,7 +194,7 @@ to download the full example code</p>
<p class="sphx-glr-script-out">Out:</p>
<div class="sphx-glr-script-out highlight-none notranslate"><div class="highlight"><pre><span></span>layer-norm-backward:
N Triton Torch Apex
0 1024.0 311.088617 99.096776 311.088617
0 1024.0 311.088617 99.096776 307.200008
1 1536.0 351.085717 133.083026 338.201833
2 2048.0 423.724127 162.217818 325.509933
3 2560.0 461.954908 182.857144 325.079368
@@ -203,27 +203,27 @@ to download the full example code</p>
6 4096.0 568.231237 220.412561 298.796351
7 4608.0 498.162157 231.849059 286.507772
8 5120.0 525.128191 242.845844 283.787523
9 5632.0 538.517949 243.107920 291.310338
10 6144.0 544.118087 248.661056 286.322318
9 5632.0 538.517949 243.107920 290.683877
10 6144.0 544.118087 248.661056 285.767458
11 6656.0 527.207907 256.000009 286.793541
12 7168.0 505.976473 261.844750 288.160801
13 7680.0 481.253256 260.707203 277.172933
14 8192.0 460.440290 268.957600 286.600589
15 8704.0 416.958106 267.472468 285.377055
12 7168.0 507.469040 261.844750 288.160801
13 7680.0 482.513091 260.707203 277.590365
14 8192.0 461.521112 269.326017 286.600589
15 8704.0 417.791980 267.815384 284.987724
16 9216.0 428.651187 272.729961 289.507855
17 9728.0 439.683593 280.278512 288.950501
18 10240.0 447.650282 286.433562 290.153487
19 10752.0 430.079980 246.229020 290.267711
20 11264.0 429.104745 245.091565 285.767446
21 11776.0 421.198220 249.007923 288.539048
22 12288.0 420.102570 254.453844 295.207195
23 12800.0 415.135142 253.256381 289.811310
17 9728.0 438.857162 280.278512 288.950501
18 10240.0 447.650282 286.767793 290.496460
19 10752.0 430.079980 246.464170 290.267711
20 11264.0 429.786952 245.091565 285.767446
21 11776.0 421.826879 249.227509 288.686414
22 12288.0 420.102570 254.673582 294.911986
23 12800.0 415.135142 253.465340 289.811310
24 13312.0 412.242569 252.559690 290.179836
25 13824.0 405.098897 257.190689 292.571423
26 14336.0 397.761846 254.673567 286.481278
27 14848.0 383.999990 257.108233 289.246765
28 15360.0 374.634130 257.610071 288.000007
29 15872.0 366.982663 262.708969 291.229369
27 14848.0 383.999990 257.293872 289.012175
28 15360.0 374.634130 257.610071 287.326580
29 15872.0 367.159524 262.708969 291.229369
</pre></div>
</div>
<div class="line-block">
@@ -477,7 +477,7 @@ to download the full example code</p>
<span class="n">bench_layer_norm</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">save_path</span><span class="o">=</span><span class="s1">&#39;.&#39;</span><span class="p">,</span> <span class="n">print_data</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 12.171 seconds)</p>
<p class="sphx-glr-timing"><strong>Total running time of the script:</strong> ( 2 minutes 12.763 seconds)</p>
<div class="sphx-glr-footer class sphx-glr-footer-example docutils container" id="sphx-glr-download-getting-started-tutorials-05-layer-norm-py">
<div class="sphx-glr-download sphx-glr-download-python docutils container">
<p><a class="reference download internal" download="" href="../../_downloads/935c0dd0fbeb4b2e69588471cbb2d4b2/05-layer-norm.py"><code class="xref download docutils literal notranslate"><span class="pre">Download</span> <span class="pre">Python</span> <span class="pre">source</span> <span class="pre">code:</span> <span class="pre">05-layer-norm.py</span></code></a></p>

View File

@@ -174,7 +174,7 @@
<div class="section" id="computation-times">
<span id="sphx-glr-getting-started-tutorials-sg-execution-times"></span><h1>Computation times<a class="headerlink" href="#computation-times" title="Permalink to this headline"></a></h1>
<p><strong>12:47.292</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<p><strong>12:44.044</strong> total execution time for <strong>getting-started_tutorials</strong> files:</p>
<table class="docutils align-default">
<colgroup>
<col style="width: 85%" />
@@ -183,23 +183,23 @@
</colgroup>
<tbody>
<tr class="row-odd"><td><p><a class="reference internal" href="03-matrix-multiplication.html#sphx-glr-getting-started-tutorials-03-matrix-multiplication-py"><span class="std std-ref">Matrix Multiplication</span></a> (<code class="docutils literal notranslate"><span class="pre">03-matrix-multiplication.py</span></code>)</p></td>
<td><p>05:26.200</p></td>
<td><p>05:26.004</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="02-fused-softmax.html#sphx-glr-getting-started-tutorials-02-fused-softmax-py"><span class="std std-ref">Fused Softmax</span></a> (<code class="docutils literal notranslate"><span class="pre">02-fused-softmax.py</span></code>)</p></td>
<td><p>03:23.377</p></td>
<td><p>03:21.143</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="05-layer-norm.html#sphx-glr-getting-started-tutorials-05-layer-norm-py"><span class="std std-ref">Layer Normalization</span></a> (<code class="docutils literal notranslate"><span class="pre">05-layer-norm.py</span></code>)</p></td>
<td><p>02:12.171</p></td>
<td><p>02:12.763</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-even"><td><p><a class="reference internal" href="01-vector-add.html#sphx-glr-getting-started-tutorials-01-vector-add-py"><span class="std std-ref">Vector Addition</span></a> (<code class="docutils literal notranslate"><span class="pre">01-vector-add.py</span></code>)</p></td>
<td><p>01:45.533</p></td>
<td><p>01:44.125</p></td>
<td><p>0.0 MB</p></td>
</tr>
<tr class="row-odd"><td><p><a class="reference internal" href="04-low-memory-dropout.html#sphx-glr-getting-started-tutorials-04-low-memory-dropout-py"><span class="std std-ref">Low-Memory Dropout</span></a> (<code class="docutils literal notranslate"><span class="pre">04-low-memory-dropout.py</span></code>)</p></td>
<td><p>00:00.011</p></td>
<td><p>00:00.010</p></td>
<td><p>0.0 MB</p></td>
</tr>
</tbody>