Add argmin argmax (#552)

This commit is contained in:
Keren Zhou
2022-06-15 13:55:20 -07:00
committed by GitHub
parent 6b9756532f
commit b5e728cb14
11 changed files with 345 additions and 101 deletions

View File

@@ -690,7 +690,7 @@ def test_f16_to_f8_rounding():
@pytest.mark.parametrize("op, dtype_str, shape",
[(op, dtype, shape)
for op in ['min', 'max', 'sum']
for op in ['min', 'max', 'argmin', 'argmax', 'sum']
for dtype in dtypes
for shape in [32, 64, 128, 512]])
def test_reduce1d(op, dtype_str, shape, device='cuda'):
@@ -707,28 +707,37 @@ def test_reduce1d(op, dtype_str, shape, device='cuda'):
# limit the range of integers so that the sum does not overflow
x = numpy_random((shape,), dtype_str=dtype_str, rs=rs)
x_tri = to_triton(x, device=device)
numpy_op = {'sum': np.sum, 'max': np.max, 'min': np.min}[op]
numpy_op = {'sum': np.sum, 'max': np.max, 'min': np.min,
'argmin': np.argmin, 'argmax': np.argmax}[op]
# numpy result
z_ref = numpy_op(x).astype(getattr(np, dtype_str))
z_dtype_str = 'int32' if op == 'argmin' or op == 'argmax' else dtype_str
z_ref = numpy_op(x).astype(getattr(np, z_dtype_str))
# triton result
z_tri = to_triton(numpy_random((1,), dtype_str=dtype_str, rs=rs), device=device)
z_tri = to_triton(numpy_random((1,), dtype_str=z_dtype_str, rs=rs), device=device)
kernel[(1,)](x_tri, z_tri, BLOCK=shape)
z_tri = to_numpy(z_tri)
# compare
if op == 'sum':
np.testing.assert_allclose(z_ref, to_numpy(z_tri), rtol=0.01)
np.testing.assert_allclose(z_ref, z_tri, rtol=0.01)
else:
np.testing.assert_equal(z_ref, to_numpy(z_tri))
if op == 'argmin' or op == 'argmax':
# argmin and argmax can have multiple valid indices.
# so instead we compare the values pointed by indices
np.testing.assert_equal(x[z_ref], x[z_tri])
else:
np.testing.assert_equal(z_ref, z_tri)
reduce_configs1 = [
(op, dtype, (1, 1024), axis) for dtype in dtypes
for op in ['min', 'max', 'sum']
for op in ['min', 'max', 'argmin', 'argmax', 'sum']
for axis in [1]
]
reduce_configs2 = [
(op, 'float32', shape, 1)
for op in ['min', 'max', 'sum']
(op, 'float32', shape, axis)
for op in ['min', 'max', 'argmin', 'argmax', 'sum']
for shape in [(2, 32), (4, 32), (4, 128), (32, 64), (64, 128), (128, 256), (32, 1024)]
for axis in [0, 1]
]
@@ -741,7 +750,10 @@ def test_reduce2d(op, dtype_str, shape, axis, device='cuda'):
range_n = tl.arange(0, BLOCK_N)
x = tl.load(X + range_m[:, None] * BLOCK_N + range_n[None, :])
z = GENERATE_TEST_HERE
tl.store(Z + range_m, z)
if AXIS == 1:
tl.store(Z + range_m, z)
else:
tl.store(Z + range_n, z)
kernel = patch_kernel(kernel, {'GENERATE_TEST_HERE': f'tl.{op}(x, axis=AXIS)'})
# input
@@ -749,17 +761,30 @@ def test_reduce2d(op, dtype_str, shape, axis, device='cuda'):
# limit the range of integers so that the sum does not overflow
x = numpy_random(shape, dtype_str=dtype_str, rs=rs)
x_tri = to_triton(x)
numpy_op = {'sum': np.sum, 'max': np.max, 'min': np.min}[op]
numpy_op = {'sum': np.sum, 'max': np.max, 'min': np.min,
'argmin': np.argmin, 'argmax': np.argmax}[op]
z_dtype_str = 'int32' if op == 'argmin' or op == 'argmax' else dtype_str
# numpy result
z_ref = numpy_op(x, axis=axis).astype(getattr(np, dtype_str))
z_ref = numpy_op(x, axis=axis).astype(getattr(np, z_dtype_str))
# triton result
z_tri = to_triton(numpy_random((shape[0],), dtype_str=dtype_str, rs=rs), device=device)
binary = kernel[(1,)](x_tri, z_tri, BLOCK_M=shape[0], BLOCK_N=shape[1], AXIS=axis)
z_tri = to_triton(numpy_random((shape[1 - axis],), dtype_str=z_dtype_str, rs=rs),
device=device)
kernel[(1,)](x_tri, z_tri, BLOCK_M=shape[0], BLOCK_N=shape[1], AXIS=axis)
z_tri = to_numpy(z_tri)
# compare
if op == 'sum':
np.testing.assert_allclose(z_ref, to_numpy(z_tri), rtol=0.01)
np.testing.assert_allclose(z_ref, z_tri, rtol=0.01)
else:
np.testing.assert_equal(z_ref, to_numpy(z_tri))
if op == 'argmin' or op == 'argmax':
# argmin and argmax can have multiple valid indices.
# so instead we compare the values pointed by indices
z_ref_index = np.expand_dims(z_ref, axis=axis)
z_tri_index = np.expand_dims(z_tri, axis=axis)
z_ref_value = np.take_along_axis(x, z_ref_index, axis=axis)
z_tri_value = np.take_along_axis(x, z_tri_index, axis=axis)
np.testing.assert_equal(z_ref_value, z_tri_value)
else:
np.testing.assert_equal(z_ref, z_tri)
# ---------------
# test permute