Add argmin argmax (#552)
This commit is contained in:
@@ -690,7 +690,7 @@ def test_f16_to_f8_rounding():
|
||||
|
||||
@pytest.mark.parametrize("op, dtype_str, shape",
|
||||
[(op, dtype, shape)
|
||||
for op in ['min', 'max', 'sum']
|
||||
for op in ['min', 'max', 'argmin', 'argmax', 'sum']
|
||||
for dtype in dtypes
|
||||
for shape in [32, 64, 128, 512]])
|
||||
def test_reduce1d(op, dtype_str, shape, device='cuda'):
|
||||
@@ -707,28 +707,37 @@ def test_reduce1d(op, dtype_str, shape, device='cuda'):
|
||||
# limit the range of integers so that the sum does not overflow
|
||||
x = numpy_random((shape,), dtype_str=dtype_str, rs=rs)
|
||||
x_tri = to_triton(x, device=device)
|
||||
numpy_op = {'sum': np.sum, 'max': np.max, 'min': np.min}[op]
|
||||
numpy_op = {'sum': np.sum, 'max': np.max, 'min': np.min,
|
||||
'argmin': np.argmin, 'argmax': np.argmax}[op]
|
||||
# numpy result
|
||||
z_ref = numpy_op(x).astype(getattr(np, dtype_str))
|
||||
z_dtype_str = 'int32' if op == 'argmin' or op == 'argmax' else dtype_str
|
||||
z_ref = numpy_op(x).astype(getattr(np, z_dtype_str))
|
||||
# triton result
|
||||
z_tri = to_triton(numpy_random((1,), dtype_str=dtype_str, rs=rs), device=device)
|
||||
z_tri = to_triton(numpy_random((1,), dtype_str=z_dtype_str, rs=rs), device=device)
|
||||
kernel[(1,)](x_tri, z_tri, BLOCK=shape)
|
||||
z_tri = to_numpy(z_tri)
|
||||
# compare
|
||||
if op == 'sum':
|
||||
np.testing.assert_allclose(z_ref, to_numpy(z_tri), rtol=0.01)
|
||||
np.testing.assert_allclose(z_ref, z_tri, rtol=0.01)
|
||||
else:
|
||||
np.testing.assert_equal(z_ref, to_numpy(z_tri))
|
||||
if op == 'argmin' or op == 'argmax':
|
||||
# argmin and argmax can have multiple valid indices.
|
||||
# so instead we compare the values pointed by indices
|
||||
np.testing.assert_equal(x[z_ref], x[z_tri])
|
||||
else:
|
||||
np.testing.assert_equal(z_ref, z_tri)
|
||||
|
||||
|
||||
reduce_configs1 = [
|
||||
(op, dtype, (1, 1024), axis) for dtype in dtypes
|
||||
for op in ['min', 'max', 'sum']
|
||||
for op in ['min', 'max', 'argmin', 'argmax', 'sum']
|
||||
for axis in [1]
|
||||
]
|
||||
reduce_configs2 = [
|
||||
(op, 'float32', shape, 1)
|
||||
for op in ['min', 'max', 'sum']
|
||||
(op, 'float32', shape, axis)
|
||||
for op in ['min', 'max', 'argmin', 'argmax', 'sum']
|
||||
for shape in [(2, 32), (4, 32), (4, 128), (32, 64), (64, 128), (128, 256), (32, 1024)]
|
||||
for axis in [0, 1]
|
||||
]
|
||||
|
||||
|
||||
@@ -741,7 +750,10 @@ def test_reduce2d(op, dtype_str, shape, axis, device='cuda'):
|
||||
range_n = tl.arange(0, BLOCK_N)
|
||||
x = tl.load(X + range_m[:, None] * BLOCK_N + range_n[None, :])
|
||||
z = GENERATE_TEST_HERE
|
||||
tl.store(Z + range_m, z)
|
||||
if AXIS == 1:
|
||||
tl.store(Z + range_m, z)
|
||||
else:
|
||||
tl.store(Z + range_n, z)
|
||||
|
||||
kernel = patch_kernel(kernel, {'GENERATE_TEST_HERE': f'tl.{op}(x, axis=AXIS)'})
|
||||
# input
|
||||
@@ -749,17 +761,30 @@ def test_reduce2d(op, dtype_str, shape, axis, device='cuda'):
|
||||
# limit the range of integers so that the sum does not overflow
|
||||
x = numpy_random(shape, dtype_str=dtype_str, rs=rs)
|
||||
x_tri = to_triton(x)
|
||||
numpy_op = {'sum': np.sum, 'max': np.max, 'min': np.min}[op]
|
||||
numpy_op = {'sum': np.sum, 'max': np.max, 'min': np.min,
|
||||
'argmin': np.argmin, 'argmax': np.argmax}[op]
|
||||
z_dtype_str = 'int32' if op == 'argmin' or op == 'argmax' else dtype_str
|
||||
# numpy result
|
||||
z_ref = numpy_op(x, axis=axis).astype(getattr(np, dtype_str))
|
||||
z_ref = numpy_op(x, axis=axis).astype(getattr(np, z_dtype_str))
|
||||
# triton result
|
||||
z_tri = to_triton(numpy_random((shape[0],), dtype_str=dtype_str, rs=rs), device=device)
|
||||
binary = kernel[(1,)](x_tri, z_tri, BLOCK_M=shape[0], BLOCK_N=shape[1], AXIS=axis)
|
||||
z_tri = to_triton(numpy_random((shape[1 - axis],), dtype_str=z_dtype_str, rs=rs),
|
||||
device=device)
|
||||
kernel[(1,)](x_tri, z_tri, BLOCK_M=shape[0], BLOCK_N=shape[1], AXIS=axis)
|
||||
z_tri = to_numpy(z_tri)
|
||||
# compare
|
||||
if op == 'sum':
|
||||
np.testing.assert_allclose(z_ref, to_numpy(z_tri), rtol=0.01)
|
||||
np.testing.assert_allclose(z_ref, z_tri, rtol=0.01)
|
||||
else:
|
||||
np.testing.assert_equal(z_ref, to_numpy(z_tri))
|
||||
if op == 'argmin' or op == 'argmax':
|
||||
# argmin and argmax can have multiple valid indices.
|
||||
# so instead we compare the values pointed by indices
|
||||
z_ref_index = np.expand_dims(z_ref, axis=axis)
|
||||
z_tri_index = np.expand_dims(z_tri, axis=axis)
|
||||
z_ref_value = np.take_along_axis(x, z_ref_index, axis=axis)
|
||||
z_tri_value = np.take_along_axis(x, z_tri_index, axis=axis)
|
||||
np.testing.assert_equal(z_ref_value, z_tri_value)
|
||||
else:
|
||||
np.testing.assert_equal(z_ref, z_tri)
|
||||
|
||||
# ---------------
|
||||
# test permute
|
||||
|
Reference in New Issue
Block a user