[CODEGEN][ANALYSIS] Fixed issue in layout inference
This commit is contained in:
committed by
Philippe Tillet
parent
89e456107b
commit
ba9955ae39
@@ -21,13 +21,11 @@ class _conv(torch.autograd.Function):
|
||||
int ridx = get_program_id(0);
|
||||
int ridy = get_program_id(1);
|
||||
int ridz = get_program_id(2);
|
||||
/*
|
||||
int gridx = M / TM;
|
||||
int gridy = N / TN;
|
||||
int rid = ridx + ridy * gridx;
|
||||
ridx = rid / gridy;
|
||||
ridy = rid % gridy;
|
||||
*/
|
||||
int rm[TM] = ridx * TM + 0 ... TM;
|
||||
int rn[TN] = ridy * TN + 0 ... TN;
|
||||
// reduction splitting
|
||||
@@ -36,10 +34,10 @@ class _conv(torch.autograd.Function):
|
||||
|
||||
// unpack aggregate rows
|
||||
// m = (z, p, q)
|
||||
int rq[TM] = rm % QQ;
|
||||
int rzp[TM] = rm / QQ;
|
||||
int rp[TM] = rzp % PP;
|
||||
int rz[TM] = rzp / PP;
|
||||
int rq[TM] = rm % QQ;
|
||||
int rzp[TM] = rm / QQ;
|
||||
int rp[TM] = rzp % PP;
|
||||
int rz[TM] = rzp / PP;
|
||||
// unpack aggregate reduction
|
||||
// k = (ci, r, s)
|
||||
int rs [TK] = rk % SS;
|
||||
@@ -68,10 +66,12 @@ class _conv(torch.autograd.Function):
|
||||
TYPE* pb[TK, TN] = B + offb;
|
||||
|
||||
// prefetches operands
|
||||
bool checka[TM, TK] = rh >= 0 && rh < HH && rw >= 0 && rw < WW;
|
||||
bool checkam[TM, TK] = rm[:, newaxis] < M;
|
||||
bool checka[TM, TK] = checkam && rh >= 0 && rh < HH && rw >= 0 && rw < WW;
|
||||
bool checkb[TK, TN] = rk[:, newaxis] < K;
|
||||
TYPE a[TM, TK] = checka ? *pa : 0;
|
||||
TYPE b[TK, TN] = checkb ? *pb : 0;
|
||||
int total = 0;
|
||||
|
||||
// reduction loop
|
||||
float acc[TM, TN] = 0;
|
||||
@@ -81,8 +81,6 @@ class _conv(torch.autograd.Function):
|
||||
int adelta[TK] = *padelta;
|
||||
padelta += TK;
|
||||
pa += adelta[newaxis, :];
|
||||
// increment B
|
||||
pb += TK * ldb_s;
|
||||
// bounds-checking A
|
||||
rk += TK;
|
||||
rs = rk % SS;
|
||||
@@ -90,7 +88,9 @@ class _conv(torch.autograd.Function):
|
||||
rr = rcir % RR;
|
||||
rh = rh_0[:, newaxis] + rr[newaxis, :];
|
||||
rw = rw_0[:, newaxis] + rs[newaxis, :];
|
||||
bool checka[TM, TK] = rh >= 0 && rh < HH && rw >= 0 && rw < WW;
|
||||
bool checka[TM, TK] = checkam && rh >= 0 && rh < HH && rw >= 0 && rw < WW;
|
||||
// increment B
|
||||
pb += TK * ldb_s;
|
||||
// bounds-checking B
|
||||
bool checkb[TK, TN] = k > TK;
|
||||
a = checka ? *pa : 0;
|
||||
@@ -152,18 +152,18 @@ class _conv(torch.autograd.Function):
|
||||
Q = (W + 2*pad[1] - S)//stride[1] + 1
|
||||
# compile kernel
|
||||
if dtype not in _conv.kernel:
|
||||
TK = 8
|
||||
defines = {
|
||||
'TYPE' : dtype,
|
||||
'TM' : [64, 128],
|
||||
'TN' : [64, 128],
|
||||
'TK' : [8],
|
||||
'TM' : [16, 32, 64, 128],
|
||||
'TN' : [16, 32, 64, 128],
|
||||
'TK' : [TK],
|
||||
'TZ' : [1],
|
||||
'LUTSIZE' : 4*CI*R*S,
|
||||
'HH': H, 'WW': W, 'PP': P, 'QQ': Q, 'SS': S, 'RR': R,
|
||||
}
|
||||
idx = torch.arange(CI*R*S)
|
||||
ci, r, s = _conv.unpack(idx, CI, R, S)
|
||||
nci, nr, ns = _conv.unpack(idx + 8, CI, R, S)
|
||||
nci, nr, ns = _conv.unpack(idx + TK, CI, R, S)
|
||||
delta = (nci - ci)*a.stride(1) + (nr - r)*a.stride(2) + (ns - s)*a.stride(3)
|
||||
delta = delta.type(torch.int32).cuda()
|
||||
_conv.kernel[dtype] = (delta, triton.kernel(_conv.src, num_warps=[2, 4], defines=defines))
|
||||
@@ -186,7 +186,7 @@ class _conv(torch.autograd.Function):
|
||||
|
||||
conv = _conv.apply
|
||||
torch.manual_seed(0)
|
||||
Z, H, W, CI, CO, R, S = 1, 32, 64, 256, 2048, 3, 3
|
||||
Z, H, W, CI, CO, R, S = 1, 56, 56, 1024, 1024, 3, 3
|
||||
pad = (1, 1)
|
||||
stride = (1, 1)
|
||||
a = torch.rand((Z, CI, H, W)).cuda()
|
||||
|
@@ -112,7 +112,7 @@ class _dot(torch.autograd.Function):
|
||||
time = kernel(a, b, c, 1., M, N, K,
|
||||
a.stride(0), b.stride(0), c.stride(0),
|
||||
grid=grid, bench=100)
|
||||
print(time)
|
||||
print(2*M*N*K/(time*1e-6)*1e-9)
|
||||
return c
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user