|
|
|
@@ -34,6 +34,45 @@ namespace {
|
|
|
|
|
//
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
// convert(blocked, dot_operand) ->
|
|
|
|
|
// convert(blocked, mma) + convert(mma, dot_operand)
|
|
|
|
|
// if this value is itself the result of a dot operation
|
|
|
|
|
// this is a hueiristics to accomodate some pattern seen in fused attention
|
|
|
|
|
// kernels.
|
|
|
|
|
// TODO: replace this by something more generic, i.e. layout-aware CSE
|
|
|
|
|
class DecomposeDotOperand : public mlir::RewritePattern {
|
|
|
|
|
|
|
|
|
|
public:
|
|
|
|
|
DecomposeDotOperand(mlir::MLIRContext *context)
|
|
|
|
|
: mlir::RewritePattern(triton::gpu::ConvertLayoutOp::getOperationName(),
|
|
|
|
|
1, context) {}
|
|
|
|
|
|
|
|
|
|
mlir::LogicalResult
|
|
|
|
|
matchAndRewrite(mlir::Operation *op,
|
|
|
|
|
mlir::PatternRewriter &rewriter) const override {
|
|
|
|
|
if (!llvm::isa<triton::gpu::ConvertLayoutOp>(op))
|
|
|
|
|
return mlir::failure();
|
|
|
|
|
auto convert = llvm::cast<triton::gpu::ConvertLayoutOp>(op);
|
|
|
|
|
auto srcType = convert.getOperand().getType().cast<RankedTensorType>();
|
|
|
|
|
auto dstType = convert.getType().cast<RankedTensorType>();
|
|
|
|
|
if (srcType.getEncoding().isa<triton::gpu::BlockedEncodingAttr>() &&
|
|
|
|
|
dstType.getEncoding().isa<triton::gpu::DotOperandEncodingAttr>()) {
|
|
|
|
|
auto tmpType =
|
|
|
|
|
RankedTensorType::get(dstType.getShape(), dstType.getElementType(),
|
|
|
|
|
dstType.getEncoding()
|
|
|
|
|
.cast<triton::gpu::DotOperandEncodingAttr>()
|
|
|
|
|
.getParent());
|
|
|
|
|
auto tmp = rewriter.create<triton::gpu::ConvertLayoutOp>(
|
|
|
|
|
convert.getLoc(), tmpType, convert.getOperand());
|
|
|
|
|
auto newConvert = rewriter.create<triton::gpu::ConvertLayoutOp>(
|
|
|
|
|
convert.getLoc(), dstType, tmp);
|
|
|
|
|
rewriter.replaceOp(op, {newConvert});
|
|
|
|
|
return mlir::success();
|
|
|
|
|
}
|
|
|
|
|
return mlir::failure();
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// Layout conversions can't deduce their return type automatically.
|
|
|
|
|
// IIUC they are therefore not handled by DRR right now
|
|
|
|
|
class SimplifyConversion : public mlir::RewritePattern {
|
|
|
|
@@ -47,6 +86,13 @@ public:
|
|
|
|
|
mlir::PatternRewriter &rewriter) const override {
|
|
|
|
|
if (!llvm::isa<triton::gpu::ConvertLayoutOp>(op))
|
|
|
|
|
return mlir::failure();
|
|
|
|
|
auto convert = llvm::cast<triton::gpu::ConvertLayoutOp>(op);
|
|
|
|
|
auto srcType = convert.getOperand().getType().cast<RankedTensorType>();
|
|
|
|
|
auto dstType = convert.getType().cast<RankedTensorType>();
|
|
|
|
|
// we don't handle conversions to DotOperandEncodingAttr
|
|
|
|
|
// this is a heuristics to accomodate fused attention
|
|
|
|
|
if (dstType.getEncoding().isa<triton::gpu::DotOperandEncodingAttr>())
|
|
|
|
|
return mlir::failure();
|
|
|
|
|
// convert to the same layout -- we can delete
|
|
|
|
|
if (op->getResultTypes() == op->getOperandTypes()) {
|
|
|
|
|
rewriter.replaceOp(op, op->getOperands());
|
|
|
|
@@ -197,12 +243,16 @@ public:
|
|
|
|
|
if (isSharedLayout(cvt->getResults()[0]) ||
|
|
|
|
|
isSharedLayout(cvt->getOperand(0)))
|
|
|
|
|
return mlir::failure();
|
|
|
|
|
// we don't handle conversions to DotOperandEncodingAttr
|
|
|
|
|
// this is a heuristics to accomodate fused attention
|
|
|
|
|
auto targetType = cvt->getResultTypes()[0].cast<RankedTensorType>();
|
|
|
|
|
if (targetType.getEncoding().isa<triton::gpu::DotOperandEncodingAttr>())
|
|
|
|
|
return mlir::failure();
|
|
|
|
|
// DFS
|
|
|
|
|
SetVector<Operation *> processed;
|
|
|
|
|
SetVector<Attribute> layout;
|
|
|
|
|
llvm::MapVector<Value, Attribute> toConvert;
|
|
|
|
|
std::vector<std::pair<Operation *, Attribute>> queue;
|
|
|
|
|
std::vector<std::pair<Value, Attribute>> toConvert;
|
|
|
|
|
queue.push_back({cvt, targetType.getEncoding()});
|
|
|
|
|
int numCvts = 1;
|
|
|
|
|
while (!queue.empty()) {
|
|
|
|
@@ -222,17 +272,20 @@ public:
|
|
|
|
|
// add all operands to the queue
|
|
|
|
|
for (Value argI : currOp->getOperands()) {
|
|
|
|
|
Attribute newEncoding;
|
|
|
|
|
// cannot invert the current encoding for this operand
|
|
|
|
|
// we stop everything
|
|
|
|
|
if (failed(invertEncoding(currLayout, currOp, newEncoding)))
|
|
|
|
|
return mlir::failure();
|
|
|
|
|
toConvert.push_back({argI, newEncoding});
|
|
|
|
|
if (toConvert.count(argI) && toConvert[argI] != newEncoding)
|
|
|
|
|
return mlir::failure();
|
|
|
|
|
//
|
|
|
|
|
Operation *opArgI = argI.getDefiningOp();
|
|
|
|
|
if (!opArgI)
|
|
|
|
|
continue;
|
|
|
|
|
toConvert.insert({argI, newEncoding});
|
|
|
|
|
if (!opArgI || processed.contains(opArgI) ||
|
|
|
|
|
(opArgI->getBlock() != cvt->getBlock()))
|
|
|
|
|
continue;
|
|
|
|
|
// if the conversion can be folded into opArgI then
|
|
|
|
|
// we actually haven't added anny conversion
|
|
|
|
|
// we don't count this conversion as expensive
|
|
|
|
|
if (isa<triton::gpu::ConvertLayoutOp, arith::ConstantOp,
|
|
|
|
|
triton::MakeRangeOp, triton::SplatOp>(*opArgI))
|
|
|
|
|
continue;
|
|
|
|
@@ -246,31 +299,30 @@ public:
|
|
|
|
|
if (numCvts > 0)
|
|
|
|
|
return mlir::failure();
|
|
|
|
|
|
|
|
|
|
FuncOp parentFunc = cvt->getParentOfType<FuncOp>();
|
|
|
|
|
bool test = cvt->getResult(0)
|
|
|
|
|
.getType()
|
|
|
|
|
.cast<RankedTensorType>()
|
|
|
|
|
.getEncoding()
|
|
|
|
|
.isa<triton::gpu::MmaEncodingAttr>();
|
|
|
|
|
// if (test)
|
|
|
|
|
// llvm::outs() << "--------\nConverting " << *cvt << "\n---------\n";
|
|
|
|
|
SmallVector<Value, 4> sortedValues;
|
|
|
|
|
SetVector<Operation *> tmp;
|
|
|
|
|
for (auto it = toConvert.begin(); it != toConvert.end(); ++it) {
|
|
|
|
|
Value v = it->first;
|
|
|
|
|
if (v.getDefiningOp())
|
|
|
|
|
tmp.insert(v.getDefiningOp());
|
|
|
|
|
else
|
|
|
|
|
sortedValues.push_back(v);
|
|
|
|
|
}
|
|
|
|
|
tmp = mlir::topologicalSort(tmp);
|
|
|
|
|
for (Operation *op : tmp)
|
|
|
|
|
sortedValues.push_back(op->getResult(0));
|
|
|
|
|
|
|
|
|
|
// llvm::outs() << "----\n";
|
|
|
|
|
BlockAndValueMapping mapping;
|
|
|
|
|
for (int i = toConvert.size() - 1; i >= 0; i--) {
|
|
|
|
|
for (Value currOperand : sortedValues) {
|
|
|
|
|
// unpack information
|
|
|
|
|
Value currOperand;
|
|
|
|
|
Attribute targetLayout;
|
|
|
|
|
std::tie(currOperand, targetLayout) = toConvert[i];
|
|
|
|
|
// if (test)
|
|
|
|
|
// llvm::outs() << "current " << currOperand << "\n";
|
|
|
|
|
Attribute targetLayout = toConvert.lookup(currOperand);
|
|
|
|
|
// rematerialize the operand if necessary
|
|
|
|
|
Operation *currOperation = currOperand.getDefiningOp();
|
|
|
|
|
if (processed.contains(currOperation)) {
|
|
|
|
|
currOperation = cloneWithInferType(rewriter, currOperation, mapping);
|
|
|
|
|
currOperand = currOperation->getResult(0);
|
|
|
|
|
}
|
|
|
|
|
if (i == 0)
|
|
|
|
|
break;
|
|
|
|
|
// compute target type for the layout cast
|
|
|
|
|
auto currType = currOperand.getType().cast<RankedTensorType>();
|
|
|
|
|
auto newType = RankedTensorType::get(
|
|
|
|
@@ -281,6 +333,7 @@ public:
|
|
|
|
|
newOperand->moveAfter(currOperation);
|
|
|
|
|
mapping.map(currOperand, newOperand);
|
|
|
|
|
}
|
|
|
|
|
// llvm::outs() << cvt->getParentOfType<mlir::FuncOp>() << "\n";
|
|
|
|
|
rewriter.replaceOp(cvt, mapping.lookup(cvt->getOperand(0)));
|
|
|
|
|
return mlir::success();
|
|
|
|
|
}
|
|
|
|
@@ -290,97 +343,71 @@ public:
|
|
|
|
|
//
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
// This modifies the loop in-place
|
|
|
|
|
bool tryLegalizeOp(Operation *op, DenseSet<Value> toPreserve,
|
|
|
|
|
mlir::PatternRewriter &rewriter) {
|
|
|
|
|
auto targetType = toPreserve.begin()->getType().cast<RankedTensorType>();
|
|
|
|
|
auto newType = [&](RankedTensorType origType) {
|
|
|
|
|
return RankedTensorType::get(origType.getShape(), origType.getElementType(),
|
|
|
|
|
targetType.getEncoding());
|
|
|
|
|
};
|
|
|
|
|
bool hasSameTypes = op->getDialect()->getNamespace() == "arith" ||
|
|
|
|
|
isa<triton::SplatOp, triton::AddPtrOp>(op);
|
|
|
|
|
if (hasSameTypes) {
|
|
|
|
|
// replace argument types
|
|
|
|
|
for (auto arg : llvm::enumerate(op->getOperands())) {
|
|
|
|
|
auto argType = arg.value().getType().dyn_cast<RankedTensorType>();
|
|
|
|
|
if (toPreserve.count(arg.value()) || !argType)
|
|
|
|
|
continue;
|
|
|
|
|
auto newArg = rewriter.create<triton::gpu::ConvertLayoutOp>(
|
|
|
|
|
rewriter.getUnknownLoc(), newType(argType), arg.value());
|
|
|
|
|
newArg->moveBefore(op);
|
|
|
|
|
op->setOperand(arg.index(), newArg);
|
|
|
|
|
}
|
|
|
|
|
// replace result types
|
|
|
|
|
if (!isa<triton::SplatOp>(op))
|
|
|
|
|
op->getResult(0).setType(op->getOperand(0).getType());
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
std::pair<SmallVector<Value, 4>, scf::ForOp>
|
|
|
|
|
tryConvertIterArg(scf::ForOp &forOp, mlir::PatternRewriter &rewriter, size_t i,
|
|
|
|
|
Type newType) {
|
|
|
|
|
forOp.getInductionVar();
|
|
|
|
|
auto newEncoding = newType.cast<RankedTensorType>().getEncoding();
|
|
|
|
|
auto ctx = forOp.getContext();
|
|
|
|
|
auto isInLoop = [&](Operation *op) { return op->getParentOp() == forOp; };
|
|
|
|
|
// Rewrite init argument
|
|
|
|
|
Type origType = forOp.getInitArgs()[i].getType();
|
|
|
|
|
SmallVector<Value, 4> newInitArgs = forOp.getInitArgs();
|
|
|
|
|
newInitArgs[i] = rewriter.create<triton::gpu::ConvertLayoutOp>(
|
|
|
|
|
newInitArgs[i].getLoc(), newType, newInitArgs[i]);
|
|
|
|
|
// Clone for loop
|
|
|
|
|
scf::ForOp newForOp = rewriter.create<scf::ForOp>(
|
|
|
|
|
forOp.getLoc(), forOp.getLowerBound(), forOp.getUpperBound(),
|
|
|
|
|
forOp.getStep(), newInitArgs);
|
|
|
|
|
newForOp->moveBefore(forOp);
|
|
|
|
|
rewriter.setInsertionPointToStart(newForOp.getBody());
|
|
|
|
|
BlockAndValueMapping mapping;
|
|
|
|
|
for (const auto &arg : llvm::enumerate(forOp.getRegionIterArgs()))
|
|
|
|
|
mapping.map(arg.value(), newForOp.getRegionIterArgs()[arg.index()]);
|
|
|
|
|
mapping.map(forOp.getInductionVar(), newForOp.getInductionVar());
|
|
|
|
|
// traverse all ops in the loop
|
|
|
|
|
for (Operation &op : forOp.getBody()->without_terminator()) {
|
|
|
|
|
// we clone the op
|
|
|
|
|
Operation *newOp = rewriter.clone(op, mapping);
|
|
|
|
|
// if any argument of this op has changed type, then the
|
|
|
|
|
// new operation is not legal and we should try to
|
|
|
|
|
// legalize it.
|
|
|
|
|
DenseSet<Value> modifiedTypes;
|
|
|
|
|
for (Value arg : op.getOperands()) {
|
|
|
|
|
if (mapping.contains(arg) &&
|
|
|
|
|
mapping.lookup(arg).getType() != arg.getType())
|
|
|
|
|
modifiedTypes.insert(mapping.lookup(arg));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool shouldTryLegalize = !modifiedTypes.empty();
|
|
|
|
|
if (shouldTryLegalize)
|
|
|
|
|
tryLegalizeOp(newOp, modifiedTypes, rewriter);
|
|
|
|
|
}
|
|
|
|
|
// create yield, inserting conversions if necessary
|
|
|
|
|
auto yieldOp = forOp.getBody()->getTerminator();
|
|
|
|
|
SmallVector<Value, 4> newYieldArgs;
|
|
|
|
|
for (Value arg : yieldOp->getOperands())
|
|
|
|
|
newYieldArgs.push_back(mapping.lookup(arg));
|
|
|
|
|
newYieldArgs[i] = rewriter.create<triton::gpu::ConvertLayoutOp>(
|
|
|
|
|
yieldOp->getLoc(), newType, newYieldArgs[i]);
|
|
|
|
|
rewriter.create<scf::YieldOp>(forOp.getLoc(), newYieldArgs);
|
|
|
|
|
|
|
|
|
|
// replace
|
|
|
|
|
SmallVector<Value, 4> newResults = newForOp->getResults();
|
|
|
|
|
newResults[i] = rewriter.create<triton::gpu::ConvertLayoutOp>(
|
|
|
|
|
rewriter.getUnknownLoc(), origType, newForOp->getResult(i));
|
|
|
|
|
newResults[i].getDefiningOp()->moveAfter(newForOp);
|
|
|
|
|
return {newResults, newForOp};
|
|
|
|
|
}
|
|
|
|
|
// int test = 0;
|
|
|
|
|
|
|
|
|
|
class MoveConvertOutOfLoop : public mlir::RewritePattern {
|
|
|
|
|
public:
|
|
|
|
|
MoveConvertOutOfLoop(mlir::MLIRContext *context)
|
|
|
|
|
: mlir::RewritePattern(scf::ForOp::getOperationName(), 1, context) {}
|
|
|
|
|
|
|
|
|
|
SmallVector<Value, 4>
|
|
|
|
|
rematerializeForLoop(mlir::PatternRewriter &rewriter, scf::ForOp &forOp,
|
|
|
|
|
size_t i, RankedTensorType newType,
|
|
|
|
|
triton::gpu::ConvertLayoutOp origConversion) const {
|
|
|
|
|
|
|
|
|
|
auto newEncoding = newType.cast<RankedTensorType>().getEncoding();
|
|
|
|
|
auto ctx = forOp.getContext();
|
|
|
|
|
auto isInLoop = [&](Operation *op) { return op->getParentOp() == forOp; };
|
|
|
|
|
// Rewrite init argument
|
|
|
|
|
Type origType = forOp.getInitArgs()[i].getType();
|
|
|
|
|
SmallVector<Value, 4> newInitArgs = forOp.getInitArgs();
|
|
|
|
|
newInitArgs[i] = rewriter.create<triton::gpu::ConvertLayoutOp>(
|
|
|
|
|
newInitArgs[i].getLoc(), newType, newInitArgs[i]);
|
|
|
|
|
// Clone for loop
|
|
|
|
|
scf::ForOp newForOp = rewriter.create<scf::ForOp>(
|
|
|
|
|
forOp.getLoc(), forOp.getLowerBound(), forOp.getUpperBound(),
|
|
|
|
|
forOp.getStep(), newInitArgs);
|
|
|
|
|
newForOp->moveBefore(forOp);
|
|
|
|
|
rewriter.setInsertionPointToStart(newForOp.getBody());
|
|
|
|
|
BlockAndValueMapping mapping;
|
|
|
|
|
for (const auto &arg : llvm::enumerate(forOp.getRegionIterArgs()))
|
|
|
|
|
mapping.map(arg.value(), newForOp.getRegionIterArgs()[arg.index()]);
|
|
|
|
|
mapping.map(origConversion.getResult(), newForOp.getRegionIterArgs()[i]);
|
|
|
|
|
// the iter arg of interest may have other uses than the conversion
|
|
|
|
|
// we're hoisting out of the loop. If that's the case we will
|
|
|
|
|
// need to add extra conversions for all uses... which is only useful
|
|
|
|
|
// if these extra conversions can be removed by another pattern
|
|
|
|
|
auto oldArg = forOp.getRegionIterArgs()[i];
|
|
|
|
|
auto newArg = newForOp.getRegionIterArgs()[i];
|
|
|
|
|
auto newArgFallback = rewriter.create<triton::gpu::ConvertLayoutOp>(
|
|
|
|
|
newForOp.getLoc(), origType, newArg);
|
|
|
|
|
|
|
|
|
|
mapping.map(forOp.getInductionVar(), newForOp.getInductionVar());
|
|
|
|
|
for (Operation &op : forOp.getBody()->without_terminator()) {
|
|
|
|
|
if (&op == (Operation *)(&origConversion))
|
|
|
|
|
continue;
|
|
|
|
|
Operation *newOp = rewriter.clone(op, mapping);
|
|
|
|
|
if (find(oldArg.getUsers(), &op) != oldArg.getUsers().end())
|
|
|
|
|
newOp->replaceUsesOfWith(newArg, newArgFallback);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// create yield, inserting conversions if necessary
|
|
|
|
|
auto yieldOp = forOp.getBody()->getTerminator();
|
|
|
|
|
SmallVector<Value, 4> newYieldArgs;
|
|
|
|
|
for (Value arg : yieldOp->getOperands())
|
|
|
|
|
newYieldArgs.push_back(mapping.lookup(arg));
|
|
|
|
|
newYieldArgs[i] = rewriter.create<triton::gpu::ConvertLayoutOp>(
|
|
|
|
|
yieldOp->getLoc(), newType, newYieldArgs[i]);
|
|
|
|
|
rewriter.create<scf::YieldOp>(forOp.getLoc(), newYieldArgs);
|
|
|
|
|
|
|
|
|
|
// replace
|
|
|
|
|
SmallVector<Value, 4> newResults = newForOp->getResults();
|
|
|
|
|
newResults[i] = rewriter.create<triton::gpu::ConvertLayoutOp>(
|
|
|
|
|
rewriter.getUnknownLoc(), origType, newForOp->getResult(i));
|
|
|
|
|
newResults[i].getDefiningOp()->moveAfter(newForOp);
|
|
|
|
|
return newResults;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
mlir::LogicalResult matchAndRewrite(mlir::Operation *op,
|
|
|
|
|
mlir::PatternRewriter &rewriter) const {
|
|
|
|
|
|
|
|
|
@@ -388,17 +415,38 @@ public:
|
|
|
|
|
auto isInLoop = [&](Operation *op) { return op->getParentOp() == forOp; };
|
|
|
|
|
auto iterArgs = forOp.getRegionIterArgs();
|
|
|
|
|
for (auto iterArg : llvm::enumerate(iterArgs)) {
|
|
|
|
|
// if (iterArg.index() != 1)
|
|
|
|
|
// continue;
|
|
|
|
|
// skip non-tensor types
|
|
|
|
|
if (!iterArg.value().getType().isa<RankedTensorType>())
|
|
|
|
|
continue;
|
|
|
|
|
// we only move `iterArg` out of the loop if
|
|
|
|
|
// - there is only a single conversion use
|
|
|
|
|
// - moving this conversion out of the loop will not generate
|
|
|
|
|
// any extra non-removable conversion
|
|
|
|
|
auto users = iterArg.value().getUsers();
|
|
|
|
|
// check first condition
|
|
|
|
|
SetVector<Type> cvtTargetTypes;
|
|
|
|
|
for (auto user : users)
|
|
|
|
|
if (isa<triton::gpu::ConvertLayoutOp>(user))
|
|
|
|
|
cvtTargetTypes.insert(user->getResults()[0].getType());
|
|
|
|
|
if (cvtTargetTypes.size() != 1)
|
|
|
|
|
continue;
|
|
|
|
|
// TODO: check second condition
|
|
|
|
|
for (auto user : users) {
|
|
|
|
|
if (isa<triton::gpu::ConvertLayoutOp>(user))
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
// check
|
|
|
|
|
for (auto op : iterArg.value().getUsers()) {
|
|
|
|
|
if (isa<triton::gpu::ConvertLayoutOp>(op)) {
|
|
|
|
|
auto newFor = tryConvertIterArg(forOp, rewriter, iterArg.index(),
|
|
|
|
|
op->getResult(0).getType());
|
|
|
|
|
rewriter.replaceOp(forOp, newFor.first);
|
|
|
|
|
return success();
|
|
|
|
|
}
|
|
|
|
|
auto cvt = dyn_cast<triton::gpu::ConvertLayoutOp>(op);
|
|
|
|
|
if (!cvt)
|
|
|
|
|
continue;
|
|
|
|
|
auto targetType = op->getResultTypes()[0].cast<RankedTensorType>();
|
|
|
|
|
auto newFor = rematerializeForLoop(rewriter, forOp, iterArg.index(),
|
|
|
|
|
targetType, cvt);
|
|
|
|
|
rewriter.replaceOp(forOp, newFor);
|
|
|
|
|
return success();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return failure();
|
|
|
|
@@ -434,20 +482,27 @@ public:
|
|
|
|
|
mlir::getForwardSlice(cvt.getResult(), &cvtSlices, filter);
|
|
|
|
|
if (cvtSlices.empty())
|
|
|
|
|
return failure();
|
|
|
|
|
// if other operands are in the loop
|
|
|
|
|
// then we don't touch anything
|
|
|
|
|
Operation *op = cvtSlices.front();
|
|
|
|
|
for (Value _arg : op->getOperands()) {
|
|
|
|
|
Operation *arg = _arg.getDefiningOp();
|
|
|
|
|
if (arg && isInLoop(arg) && (arg != cvt))
|
|
|
|
|
|
|
|
|
|
for (Operation *op : cvtSlices) {
|
|
|
|
|
if (!op->hasTrait<mlir::OpTrait::SameOperandsAndResultEncoding>() &&
|
|
|
|
|
!op->hasTrait<mlir::OpTrait::SameOperandsAndResultType>())
|
|
|
|
|
return failure();
|
|
|
|
|
for (Value arg : op->getOperands()) {
|
|
|
|
|
Operation *argOp = arg.getDefiningOp();
|
|
|
|
|
if (argOp && (argOp != cvt) &&
|
|
|
|
|
!isa<arith::ConstantOp, triton::SplatOp>(argOp)) {
|
|
|
|
|
return failure();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// otherwise, we push the conversion forward
|
|
|
|
|
// since we'll be able to move it out of
|
|
|
|
|
// the loop once it reaches the yield op
|
|
|
|
|
// op(cvt(arg_0), arg_1, ..., arg_n)
|
|
|
|
|
// -> cvt(op(arg_0, cvt(arg_1), ..., cvt(arg_n)))
|
|
|
|
|
BlockAndValueMapping mapping;
|
|
|
|
|
auto op = cvtSlices.front();
|
|
|
|
|
for (Value arg : op->getOperands()) {
|
|
|
|
|
if (arg.getDefiningOp() == cvt)
|
|
|
|
|
mapping.map(arg, cvt.getOperand());
|
|
|
|
@@ -492,7 +547,7 @@ public:
|
|
|
|
|
oldAcc.getLoc(), newRetType, oldAcc);
|
|
|
|
|
auto newDot = rewriter.create<triton::DotOp>(
|
|
|
|
|
dotOp.getLoc(), newRetType, dotOp.getOperand(0), dotOp.getOperand(1),
|
|
|
|
|
newAcc, dotOp.allowTF32());
|
|
|
|
|
newAcc, dotOp.allowTF32(), dotOp.transA(), dotOp.transB());
|
|
|
|
|
|
|
|
|
|
rewriter.replaceOpWithNewOp<triton::gpu::ConvertLayoutOp>(
|
|
|
|
|
op, oldRetType, newDot.getResult());
|
|
|
|
@@ -515,6 +570,7 @@ public:
|
|
|
|
|
mlir::RewritePatternSet patterns(context);
|
|
|
|
|
|
|
|
|
|
patterns.add<SimplifyConversion>(context);
|
|
|
|
|
patterns.add<DecomposeDotOperand>(context);
|
|
|
|
|
patterns.add<RematerializeBackward>(context);
|
|
|
|
|
patterns.add<RematerializeForward>(context);
|
|
|
|
|
patterns.add<MoveConvertOutOfLoop>(context);
|
|
|
|
|